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Abstract

How does employer learning affect the allocation of talent in the market

for research scientists? I study this question using the job histories of 40,000

Ph.D.’s in computer science (CS) matched to their scientific publications and

patent applications. Authorship of a CS conference proceeding doubles the

probability that a researcher moves to one of the top tech firms in the following

year, controlling for her origin firm and experience, implying a strong role

for public learning in the matching process between more productive workers

and more productive firms. Many higher-quality papers are accompanied by

a related patent application, but the application is private information for 18

months. Authors of such papers are somewhat less likely to move up the

firm ladder in the following year, but are more likely to end up at a top firm

within three years, as predicted by a model of employer wage setting with

asymmetric information. I estimate a structural version of the model and find

that if employers did not learn about workers from post-PhD research, there

would be 16% fewer scientific publications by early-career computer scientists.

Disclosing patent applications one year faster would increase innovation by

1%, driven by a faster rate of positive assortative matching.
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1 Introduction

Identifying talent is critical to the efficient allocation of labor in an economy.

A large body of research suggests that workers’ abilities are only partially revealed

prior to labor market entry, and that substantial learning by employers occurs over

the first decade or so of work (e.g., Altonji and Pierret 2001; Farber and Gibbons

1996; Pallais 2014). Existing tests of employer learning, however, rely on only

indirect correlates of worker abilities (Kahn 2013; Lange 2007; Schönberg 2007). In

most settings researchers cannot see the public signals about worker ability that

are assumed to be available to employers in standard learning models, let alone the

private signals that only their current employer can see in models of asymmetric

learning (Acemoglu and Pischke 1998; Li 2013). The missing data challenge also

makes it difficult to quantify the role of employer learning in the reallocation of

talent and the efficiency of the process as emphasized in theoretical frameworks

(e.g., Terviö 2009; Waldman 1984).

In this paper I address this missing data challenge directly by building a

new dataset that combines the employment histories of newly-minted Ph.D.’s in

computer science (CS) with information on their publications in major conference

proceedings and their patents. I use the data to show descriptively how the pub-

lication of a new paper or a patent application affects inter-firm mobility. I then

estimate a structural model of imperfect competition for talent among employers,

and use the model to assess the impacts of both public and private learning on the

efficiency of talent allocation.

Every year about 4,000 Ph.D.’s graduate in CS or closely related fields in the

United States.1 The majority of new CS Ph.D.’s enter the private sector, but they

often continue to publish at academic conferences, yielding public information

1The number is based on the Survey of Earned Doctorates by the National Science Foundation.

Throughout this paper I refer to computer scientists as workers who have a Ph.D. in Computer

Science or Electrical Engineering (including EECS) in the United States.
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on their research ability.2 About 25% of papers from industry researchers are

accompanied by a patent application filed by their employers: these papers are

more highly cited in later years, suggesting that they contain more valuable ideas.

The existence of an accompanying patent, however, is private information that is

only revealed with an 18-month lag.3 Patterns of mobility in the period immediately

after the patent application (when the fact of filing is private) and in the following

few years (when the patent application becomes public information) therefore

provide novel evidence of asymmetric learning.

My empirical analysis is based on a new dynamic model of employer learning

and sorting that introduces information frictions into a monopsony framework as in

Card, Cardoso, Heining, and Kline (2018). I consider the wage setting and task allo-

cation decisions made by forward-looking firms in an imperfectly competitive labor

market. Firms that vary in productivity allocate workers to publication-oriented

research tasks and update their beliefs about the research ability of workers based

on their outputs. When part of the research output is publicly visible, firms face

a dynamic trade-off: allocating a worker to publication-oriented tasks allows the

firm to benefit from publishing at conferences, but it also increases the risk that

high-ability workers will be recognized and poached by outside employers. For

simplicity, I assume that workers are myopic and only care about current period

wages, though I allow them to have idiosyncratic preferences over different em-

ployers. With dynamic incentives solely on the firms’ side, I solve for a Markov

Perfect Bayesian Nash equilibrium and derive predictions on how employer learn-

ing changes the reallocation of workers between firms.

This model generates two key testable predictions: (1) Workers with newly

2The share of new CS Ph.D.s entering the industry as opposed to academia has been increasing

over the past 20 years and exceeding 50% since 2017 (Appendix Figure B3).

3The American Inventors Protection Act (AIPA) of 1999 amends title 35, United States Code

(U.S.C.) 122 to provide that patent applications shall be published promptly after the expiration of

18 months from the earliest filing date. The United States Patent and Trademark Office (USPTO)

has implemented this rule since November 29, 2000.
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revealed signals about their productivity in innovation are more likely to move

between firms and move to more productive firms than similar workers without

such signals. (2) Job mobility is suppressed for workers with positive signals

that are observed by the incumbent employer but unknown to potential outside

employers. I adopt these predictions as tests for the presence of symmetric (public)

and asymmetric employer learning.

The labor market for computer scientists provides rich information on worker

productivity that allows me to directly test for employer learning. I match the

public LinkedIn profiles of 40,000 computer scientists with their on-the-job research

outputs including CS conference proceedings and patent applications. Relative

to economics, initial information from the PhD education is less predictive of

a computer scientist’s future research success.4 The stronger role of post-PhD

employer learning than of initial information in the allocation of talent is also

confirmed by a Shapley-value-based decomposition in my structural analysis.

I test for public employer learning by comparing the job mobility of workers

who produce a paper with similar coworkers without a paper. I measure upward

mobility by job movements into top “big tech” firms {Google, Microsoft, IBM,

Facebook, Amazon, Apple} from other nontop firms in the industry.5 Figure 1a

presents a simple comparison between newly minted CS researchers who start off

at a nontop firm and either publish or do not publish a paper at a CS conference in

the first two years post Ph.D. The raw data clearly shows a divergence in upward

mobility rates. Conditional on firm-year fixed effects and a rich set of controls for

worker and position characteristics, I find that employees at nontop firms with a

paper are more than twice as likely to move to a top firm the next year, suggesting

that the revelation of a publication boosts positive assortative matching between

4I run regressions of post-PhD research accomplishments on PhD school and cohort fixed effects.

Using the data on economists in Sarsons (2017), I find a much higher 𝑅2
among economists than

among computer scientists (Appendix Table B1).

5The top firms pay higher wages and on average produce more papers. About a quarter of CS

papers from the industry have an author from the 6 top firms.
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higher-ability researchers and more productive firms.

Figure 1: Upward Mobility from Nontop to Top Firms
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(b) Paper+Patent vs. Paper Only
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Notes: This figure shows the share of computer scientists who work at a top firm in each year post

PhD, separately by a person’s research output while working at a nontop firm initially.

To test for asymmetric learning, I exploit patent laws that, by default, delay

the disclosure of a patent application by 18 months after its initial filing.6 This

institutional feature suggests whether a paper has a matched patent application is

revealed later than the paper itself.7 Non-disclosure agreements also would not

allow workers openly announce pending patent applications that have not been

published by the patents office.8

Figure 1b shows another divergence in upward mobility between workers

who either produce only a paper or a paper with a matched patent. Comparing

similar coworkers at nontop firms in an event-study framework, I find that authors

of papers with a matched patent are less likely to move than other authors within

a year, when only the existence of the paper is public information. But in three

years when most patent applications become public information, they are 14%

6See Title 35 U.S.C. 122 (AIPA 1999) in Appendix Table B4. Figure B1 shows that about 80% of

patent applications comply with the 18-month rule. The 20% non-compliance is driven by firms

that file a non-publication request at the time of initial filing (see exception B of 122(b) in Table B4).

7See Table 2 for examples. I matched patent applications to papers according to the team of

authors, employment information, and patentability conditions (Title 35 U.S.C. 102).

8Non-disclosure agreements define any invention on the job as the employer’s proprietary in-

formation. Patent applications that have not been published may even be viewed as trade secrets

(Hyde Corporation v. Huffines 1958).
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more likely to move to a new firm, and 17% more likely to move to a top firm. This

finding is consistent with my model of imperfect competition for research scientists:

incumbent firms with knowledge of the matched patent would post a higher wage

for such workers and therefore retain them longer, but once the matched patent is

revealed, public employer learning pulls high-ability workers out of less productive

firms. I find similar evidence of employer learning from other mobility outcomes

such as moving to a higher-wage firm or promotions (Pastorino 2023). The lack

of immediate promotions for authors who have a paper with a matched patent

supports the idea that firms may under-place talent to reduce poaching (Milgrom

and Oster 1987; Waldman 1984).

How much does employer learning matter for the efficient allocation of labor?

To provide a quantitative assessment, I present counterfactual simulations from a

fully specified model with and without employer learning from workers’ on-the-

job research. I estimate the model using a nested fixed-point algorithm as in Rust

(1987) to maximize the joint likelihood of job movements and research production

by early-career computer scientists. Simulating the model with no learning from

papers or patent applications, I estimate that the overall publication rate of CS

researchers in the first five years of their career would be 16% lower.

Removing the delayed disclosure of patent applications is estimated to im-

prove publication rate by 1%, which is fully driven by a faster rate of positive

assortative matching. Workers who produce a paper with a matched patent would

experience a 2 pp increase in upward mobility within a year, and generate a 5-6%

increase in innovation production at top firms. However, in the absence of private

information rent, incumbent firms would assign fewer publication-oriented tasks

ex ante, providing a counterforce on the discovery of talent in this counterfactual

scenario. The inefficiency in task allocation is closely related to the prediction that

employer-provided general skill training is inefficiently lower when firms have less

monospony power (Acemoglu and Pischke 1998; Manning 2003; Stevens 1994).
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This paper makes two main contributions. First, I contribute to the employer

learning literature by providing direct evidence of the impacts of public learning

following publications by CS researchers. Early works by Altonji and Pierret (2001)

and Farber and Gibbons (1996) attributed the increasing correlation between wages

and AFQT scores (observed by researchers but not firms) over time to employer

learning. The underlying model of these studies posits that employers update

their belief when new signals arrive, but these signals are rarely observable except

from within-firm personnel records (Kahn and Lange 2014). This paper offers

more direct tests for public learning by estimating changes in job mobility around

a CS publication. Very few articles in this literature test for asymmetric employer

learning (Kahn 2013; Schönberg 2007). This paper exploits the delayed disclosure

of patent applications to show that workers who produce higher-quality research

experience a delayed increase in mobility. Consistent with Hager, Schwarz, and

Waldinger (2023), I find that high-ability workers hidden in less productive firms

would benefit from a reduction of asymmetric information.

Second, this paper attempts to bring together the theory of employer learning

and models of imperfect labor market competition. The classic learning framework

often begins with homogeneous players (employers) under perfect competition,

which are reasonable simplifying assumptions to discuss complicated problems

such as adverse selection (Boozer 1994; Hendricks and Porter 1988; Li 2013). Re-

laxing the homogeneity and perfect competition assumptions generates a richer set

of predictions on job mobility upon information revelation, which I validate in the

CS labor market. Doing so does not change the important insight that movers are

adversely selected under asymmetric information (Gibbons and Katz 1991; Green-

wald 1986). Furthermore, introducing information frictions into a monopsony

framework as in Card et al. (2018) provides a tractable model that can be estimated

to assess the role of employer learning in the efficient allocation of labor.

6



2 A Dynamic Model of Employer Learning

I develop a discrete-time finite horizon dynamic model of employer learn-

ing by firms in an imperfectly competitive labor market. I first lay out the key

assumptions in the conceptual framework, and then fully specify the model and

characterize its equilibrium.

2.1 Conceptual Framework

The model concerns the allocation of labor between and within firms given

noisy information about workers’ binary research ability, denoted by 𝛼.

Firms collect revenue from routine activity and from innovation outputs of

workers, which may take the form of publications, patent applications, or both,

as shown in Figure 2. High-ability workers are more likely than low-ability work-

ers to produce each type of innovation. The likelihood of publishing a paper is

jointly determined by a worker’s ability 𝛼 and the share of time she can spend on

publication-oriented tasks, 𝜏, which is chosen endogenously by her employer. I

allow firms to vary in their returns to different types of innovation. Some firms

are better at expanding business through publishing at conferences, whereas other

firms may benefit more from private research that yields traditional patents unre-

lated to papers. The production of publications is supermodular in equilibrium:

firms that gain more from publications will set a higher 𝜏, which increases the

difference in publication rates between high-ability and low-ability workers.

The challenge of assigning tasks efficiently arises from the uncertainty about

worker ability. When new Ph.D.s enter the labor market (𝑡 = 1), there is public

information 𝐼𝑖1 about person 𝑖 that is predictive of 𝛼𝑖 , such as the prestige of her

Ph.D. institution. Post-Ph.D. employer learning, in contrast, is based on the inno-

vation outputs of workers and is asymmetric between firms when the incumbent

employer has additional information earlier than the outside labor market. Specifi-
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Figure 2: Worker Output

cally, any research publication (solid circle in Figure 2) becomes public information

with little or no lag. But whether a paper is accompanied by a patent application,

an indicator for higher-quality research, is private information with the employer

of the author(s) for one period.

Conditional on information about workers, firms make simultaneous offers of

a wage {𝑤𝑖𝑡 𝑗} and a task allocation {𝜏𝑖𝑡 𝑗} that maximize expected flow profit plus a

discounted continuation value from the worker. Importantly, they face a dynamic

tradeoff: setting a higher 𝜏 can increase a firm’s revenue from publications today,

but it also increases the risk that other firms recognize and poach the authors

in the next period. Such turnover risk is higher at less productive firms, which

post lower wages on average in equilibrium. The downward pressure of turnover

risk on publication-oriented tasks is the same as how monopsony power affects

employer-provided general skill training (Acemoglu and Pischke 1998; Manning

2003; Stevens 1994).

To focus on the dynamic decisions by firms, I keep workers’ problem simple

and static. At 𝑡 = 1, workers observe the wage postings and draw idiosyncratic

preferences over employers, 𝜖𝑖1𝑗 , which can be correlated within each nest of em-

ployers 𝐺(𝑗) ∈{Tenure-Track, Postdoc, Top Firms, Nontop Firms} but independent
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between 𝐺’s. At 𝑡 > 1, I follow Card et al. (2018) to let workers re-enter the job

market and redraw preferences with probability 𝜆(𝐼𝑖𝑡), which is a function of the

public information 𝐼𝑖𝑡 known to all employers at the beginning of 𝑡. Other workers

are assumed to stay with their original employers. When 𝜆 < 1, firms have addi-

tional monopsony power over their incumbent employees and can set lower wages

than for equally productive new workers.

I show the existence and uniqueness of a Markov Perfect Bayesian Nash Equi-

librium in the dynamic contract-posting game between firms. The wage increase

upon public information revelation is higher at more productive firms, pushing

high-ability workers up along the firm job ladder. The simplifying assumption that

workers naively solve a static job choice problem shuts down self-selection into

more research-intensive jobs (Stern 2004), but they do not change the key model

predictions (Section 2.3) on increased mobility from less productive firms when the

labor market receives positive information about workers.

2.2 Model Specification and Equilibrium

I clarify the notation and the information structure, state the repeated static

problem of workers, the dynamic problem of firms, and solve for the equilibrium

in this finite 𝑇-period game via backward induction.

2.2.1 Notation and Information Structure

Production. Denote by (𝑃, 𝑃𝑄, 𝑄) the three types of innovation in Figure 2:

𝑃 represents publications without a matched patent, 𝑃𝑄 represents publications

with a matched patent, and 𝑄 represents patents unrelated to research publica-

tions. The innovation output of a worker per period is summarized by a vector

(𝐷𝑖𝑡(𝑃), 𝐷𝑖𝑡(𝑃𝑄), 𝐷𝑖𝑡(𝑄)), each of which indicates if 𝑖 produces that type of inno-

vation during period 𝑡. Per unit of time on publication-oriented tasks, high-ability

workers produce a paper with probability 𝑝𝐻 , which is assumed to be higher than
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𝑝𝐿, the probability for low-ability workers. The publications produced by high-

ability workers are also more likely to be high-quality and have a matched patent

application, 𝑝∗
𝐻
> 𝑝∗

𝐿
. As shown in Table 1, the likelihood of any research publica-

tion is jointly determined by worker ability and publication-oriented tasks 𝜏, and

it does not depend on the identity of employer 𝑗 conditional on 𝜏. High-ability

workers are also more capable of producing patents unrelated to papers, but the

likelihood of producing 𝑄 is independent from 𝜏. For simplicity, I do not let firms

endogenously assign a patent-oriented task but allow firms to vary in baseline

patenting rates denoted by 𝑞 𝑗 .9

Table 1: Likelihood of Innovation Output

Innovation Output Likelihood

𝐷𝑖𝑡(𝑃) Any Paper but no Matched Patent 𝐸[𝐷𝑖𝑡(𝑃) |𝛼, 𝜏, 𝑗] = 𝑝𝛼 × (1 − 𝑝∗𝛼) × 𝜏

𝐷𝑖𝑡(𝑃𝑄) Any Paper + Matched Patent 𝐸[𝐷𝑖𝑡(𝑃𝑄)|𝛼, 𝜏, 𝑗] = 𝑝𝛼 × 𝑝∗𝛼 × 𝜏

𝐷𝑖𝑡(𝑄) Any Patent unrel. to Paper 𝐸[𝐷𝑖𝑡(𝑄) |𝛼, 𝜏, 𝑗] = 𝑞𝛼 + 𝑞 𝑗

Firms are endowed with a baseline productivity 𝜙̄ 𝑗 ∈ R+, and proportionate

returns to each type of innovation,

[
𝜙 𝑗(𝑘)

]
𝑘∈{𝑃, 𝑃𝑄, 𝑄} with 𝜙 𝑗(𝑘) ∈ R+, all of which

are publicly known. Firms that benefit more from publications have a higher 𝜙 𝑗(𝑃)
or 𝜙 𝑗(𝑃𝑄) , while firms that rely more on patenting have a higher 𝜙 𝑗(𝑄). The

expected value from the production at firm 𝑗 conditional on worker ability 𝛼 and

9𝑞 𝑗 is a normalization of the firm’s return to patents unrelated to papers, 𝜙 𝑗(𝑄). I calibrate 𝜙 𝑗(𝑄)
based on firm fixed effect in patenting before estimating the model (Section 5).
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the share of time allocated to publication-oriented tasks, 𝜏, is:10

𝑌𝑗(𝛼, 𝜏) = 𝜙̄ 𝑗

©­­­­­­­«
1 − 𝜏︸︷︷︸
routine

+
∑

𝑘∈{𝑃, 𝑃𝑄, 𝑄}
𝜙 𝑗(𝑘) × 𝐸[𝐷𝑖𝑡(𝑘)|𝛼, 𝜏, 𝑗]︸                                        ︷︷                                        ︸

returns to innovation

− 𝜁(𝜏)︸︷︷︸
cost

ª®®®®®®®¬
(2.1)

Information Structure. The payoff-relevant state space for firms is defined

by the information about workers. Denote by 𝐼𝑖𝑡 the public information about the

research ability of worker 𝑖 at the beginning of 𝑡, and by 𝐼̃𝑖𝑡 the private information

known only to her incumbent employer. At 𝑡 = 1, 𝐼𝑖1 includes her education and

publication records before Ph.D., and 𝐼̃𝑖1 = ∅. Once a worker has entered the labor

market, information evolves according to her on-the-job innovation output.

Employer 𝑗(𝑖 , 𝑡) of worker 𝑖 in period 𝑡 will have full access to her innovation

output (𝐷𝑖𝑡(𝑃), 𝐷𝑖𝑡(𝑃𝑄), 𝐷𝑖𝑡(𝑄)) in that period. However, by the beginning of the

next period, the outside employers will only know if there is a paper published

during 𝑡, denoted by 𝐷𝑖𝑡(𝑃) + 𝐷𝑖𝑡(𝑃𝑄), but cannot tell if her publication has a

matched patent application, or if she has other patents unrelated to papers (see the

dashed circle in Figure 2). Under the assumption that 𝐼̃𝑖𝑡 becomes public with a

10There is a convex cost of allocating workers to publication-oriented tasks, which may include

investment in computing power that often grows in a convex way as employees spend more time on

research. It may also absorb the management costs of moving workers away from routine activities

within a firm. For example, a firm may have to establish an in-house research lab, host academic

consultants, and establish a new performance evaluation system for workers who are increasingly

involved in research.
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one-period delay, the information evolution is summarized as follows:11

public 𝐼𝑖(𝑡+1) = 𝐼𝑖𝑡 ∪ 𝐼̃𝑖𝑡︸  ︷︷  ︸
info before 𝑡

∪ { 𝑗(𝑖 , 𝑡), 𝐷𝑖𝑡(𝑃) + 𝐷𝑖𝑡(𝑃𝑄)︸                ︷︷                ︸
any paper at 𝑡

} (2.3)

private 𝐼̃𝑖(𝑡+1) = {(𝐷𝑖𝑡(𝑃), 𝐷𝑖𝑡(𝑃𝑄), 𝐷𝑖𝑡(𝑄))}

The model timeline is detailed in Appendix A0. At least three discrete periods

are needed to capture the full information revelation process.

2.2.2 Workers’ Problem

Workers who are on the labor market at 𝑡 draw idiosyncratic preferences from

a generalized extreme value (GEV) distribution:

𝐹({𝜖𝑖𝑡 𝑗}) = 𝑒𝑥𝑝
©­«−

∑
𝐺∈𝐶

©­«
∑
𝑗∈𝐺

𝑒𝑥𝑝(−𝜌−1

𝐺 𝜖𝑖𝑡 𝑗)ª®¬
𝜌𝐺ª®¬ , 𝜌𝐺 ∈ (0, 1] (2.4)

where 𝐶 denotes the set of potential employers a worker can choose from in a given

period.12 Under this assumption, preferences are independent between nests and

over time, but can be correlated within a nest 𝐺 if 𝜌𝐺 < 1. Among the four nests

𝐺(𝑗) ∈ {Tenure-Track, Postdoc, Top Firms, Non-Top Firms}in the CS labor market,

the first two represent academia while the last two represent industry.

All workers are on the labor market at 𝑡 = 1 (the first year post PhD). At 𝑡 > 1

any worker 𝑖 from nest 𝐺 with public information 𝐼𝑖𝑡 can get on the market again

and search for new jobs with probability:

𝜆(𝐼𝑖𝑡) = 𝜆0,𝐺 × (1 + 𝜆1,𝐺 × 𝑃𝑟(𝐻 | 𝐼𝑖𝑡)) (2.5)

11The conditional probability distribution of future states depends only on the current state,

satisfying the Markov property:

𝑃𝑟(𝐼𝑖(𝑡+1) , 𝐼̃𝑖(𝑡+1) |𝐼𝑖𝑡 , 𝐼̃𝑖𝑡) =
∑

𝛼∈{𝐻,𝐿}
𝑃𝑟(𝛼 |𝐼𝑖𝑡 , 𝐼̃𝑖𝑡)︸        ︷︷        ︸

current belief

× 𝑃𝑟(𝐷𝑖𝑡(𝑃), 𝐷𝑖𝑡(𝑃𝑄), 𝐷𝑖𝑡(𝑄)| 𝑗(𝑖 , 𝑡), 𝛼)︸                                           ︷︷                                           ︸
innovation output at 𝑡

(2.2)

12Workers from industry may not be always be able to move to academia. In that case, 𝐶 does not

include tenure-track or postdoc employers. See footnote 58.
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which takes a positive value in (0, 1], and can vary between original nest 𝐺’s and

depend on public belief 𝑃𝑟(𝛼𝑖 = 𝐻 | 𝐼𝑖𝑡) about the worker.13 14 Other workers who

are not on the market stay put and hold fixed the preferences they have drawn

before.

Workers who are on the labor market observe the wages posted simultane-

ously by potential employers {𝑤𝑖𝑡 𝑗} and choose an employer as follows:

𝑗(𝑖 , 𝑡) = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑗∈𝐶 𝑢𝑖𝑡 𝑗 = 𝑏 × 𝑙𝑛(𝑤𝑖 𝑡 𝑗) + 𝜌𝐺(𝑗) × 𝜖𝑖 𝑡 𝑗 (2.6)

Assume 𝑏 is positive and finite and ∀𝐺 : 𝜌𝐺 ∈ (0, 1]. The elasticity of labor supply

increases in the ratio
𝑏
𝜌𝐺

. Throughout the analysis below, I assume this ratio is

finite, which means the the labor market is imperfectly competitive. Given GEV

preference shocks, a worker’s choice probabilities are represented by the well-

known nested logit model (McFadden 1973; Imbens and Wooldridge 2007):

𝑠 𝑗 | 𝐶 = 𝑠 𝑗 | 𝐺(𝑗)︸︷︷︸
choose 𝑗∈𝐺(𝑗)

× 𝑠𝐺(𝑗)| 𝐶︸ ︷︷ ︸
choose nest 𝐺(𝑗)∈𝐶

(2.7)

each of which is a function of wages within a choice set 𝐶. Conditional on public

information 𝐼𝑖𝑡 and posted wages {𝑤𝑖𝑡 𝑗}, the worker’s expected labor supply to her

incumbent employer vs. to an outside employer can be written as:

Incumbent 𝑗 = 𝑗(𝑖 , 𝑡 − 1) : 𝑠
(1)
𝑗
({𝑤𝑖𝑡 𝑗′}; 𝐼𝑖𝑡) = 1 − 𝜆(𝐼𝑖𝑡)︸    ︷︷    ︸

off market

+ 𝜆(𝐼𝑖𝑡) × 𝐸𝐶[𝑠 𝑗 |𝐶]︸              ︷︷              ︸
on market & choose j again

Outside 𝑗 ≠ 𝑗(𝑖 , 𝑡 − 1) : 𝑠
(0)
𝑗
({𝑤𝑖𝑡 𝑗′}; 𝐼𝑖𝑡) = 𝜆(𝐼𝑖𝑡) × 𝐸𝐶

[
𝑠 𝑗 |𝐶

]
(2.8)

The elasticity of labor supply to a firm is lower among incumbent employees when

13For example, a worker with higher market belief but employed by a low-productivity firm may

search for new jobs more frequently, in which case 𝜆1,𝐺 > 0 for 𝐺 = Non-Top Firms. Workers

from top firms, in contrast, may be less likely to search for new jobs when they are perceived as

high-ability by the market.

14This formulation is equivalent to each worker drawing a random search cost 𝑧 𝑑∼ Φ, and only

search for new jobs if 𝑧 < 𝑧, where Φ(𝑧) = 𝜆. The 𝜆’s can also be interpreted as job arrival rates in

search models (e.g. Burdett and Mortensen 1998;Postel-Vinay and Robin 2002).
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𝜆 < 1.15 The labor market frictions arising from the fact that workers are not al-

ways on the market gives employers additional monopsony power over incumbent

employees relative to new workers.

2.2.3 Employers’ Problem

I focus on how employers set wages and allocate workers to publication-

oriented tasks in an intermediate period 𝑡 ∈ {2, , ..., 𝑇−1}. The complete backward

induction is presented in the Appendix A1. Employers see either public infor-

mation (𝐼𝑖𝑡) about workers from other firms, or public and private information

(𝐼𝑖𝑡 , 𝐼̃𝑖𝑡) about incumbent workers. They do not know whether a worker is on the

market or not, or her specific preferences, and therefore cannot price discriminate

accordingly.

For an incumbent employee with public and private information (𝐼𝑖𝑡 , 𝐼̃𝑖𝑡),
employer 𝑗 solves for an optimal contract (𝑤(1)

𝑖𝑡 𝑗
, 𝜏(1)

𝑖𝑡 𝑗
), taking as given the wages set

by other firms, denoted by 𝑤−𝑗 :16

𝑣
(1)
𝑡 𝑗
(𝐼𝑖𝑡 , 𝐼̃𝑖𝑡) = 𝑚𝑎𝑥𝒘 ,𝝉 𝑠

(1)
𝑗
(𝒘 , 𝑤−𝑗 ; 𝐼𝑖𝑡)︸             ︷︷             ︸

expected labor supply

×
(
𝐸𝛼 |𝐼𝑖𝑡∪𝐼̃𝑖𝑡 [𝑌𝑗(𝛼, 𝝉)] + 𝛽 𝐸[𝑣(1)(𝑡+1)𝑗(𝐼

′, 𝐼̃′) | 𝝉] −𝒘
)

︸                                                        ︷︷                                                        ︸
flow profit & discounted continuation value

(2.10)

The continuation value equals the value from an incumbent worker 𝑣
(1)
(𝑡+1)𝑗 , expected

15The elasticity of an incumbent worker vs. an outside worker to firm 𝑗, given public information

𝐼 and the wages posted by other firms:

𝜉(1)
𝑖𝑡 𝑗
B

𝜕𝑙𝑛(𝑠(1)
𝑗
(𝒘 , 𝑤−𝑗 ; 𝐼))

𝜕𝑙𝑛(𝑤) =
𝑏

𝜌𝐺
× 𝐸𝐶[

𝜆(𝐼) × 𝑠 𝑗 |𝐺 × 𝑠𝐺 |𝐶

𝑠
(1)
𝑗

×
(
1 − 𝜌𝐺 𝑠 𝑗 |𝐺 𝑠𝐺 |𝐶 − (1 − 𝜌𝐺)𝑠 𝑗 |𝐺

)
] (2.9)

𝜉(0)
𝑖𝑡 𝑗
(̃𝐼) B

𝜕𝑙𝑛(𝑠(0)
𝑗
(𝒘 , 𝑤−𝑗 ; 𝐼 , 𝐼̃))
𝜕𝑙𝑛(𝑤) =

𝑏

𝜌𝐺
× 𝐸𝐶

[
𝑠𝐺 |𝐶

𝐸𝐶[𝑠𝐺 |𝐶]
×

(
1 − 𝜌𝐺 𝑠 𝑗 |𝐺 𝑠𝐺 |𝐶 − (1 − 𝜌𝐺)𝑠 𝑗 |𝐺

) ]
Note 𝜆(𝐼) does not show up in the elasticity of an outside worker.

16In equilibrium (Definition 1, the wage 𝑤
(1)
𝑡 𝑗
(𝐼 , 𝐼̃) for an incumbent employee is the best response

to 𝑤−𝑗 = 𝑤−𝑗(𝐼) conditional on public information 𝐼.
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over the innovation outputs that will be produced in the current period.17 It is

discounted by a common factor 𝛽.

The optimal wage in this dynamic problem is front-loaded with the expected

continuation value from a job stayer, and is marked down by the inverse of labor

supply elasticity 𝜉(1)
𝑖𝑡 𝑗

(2.9):18

𝒘(1)
𝑖𝑡 𝑗

=

(
𝐸𝛼 |𝐼𝑖𝑡∪𝐼̃𝑖𝑡 [𝑌𝑗(𝛼, 𝝉)] + 𝛽 𝐸[𝑣(1)(𝑡+1)𝑗(𝐼

′, 𝐼̃′) | 𝝉]
)
× 𝜉(1)

𝑖𝑡 𝑗
×

(
1 + 𝜉(1)

𝑖𝑡 𝑗

)−1︸                 ︷︷                 ︸
markdown

(2.11)

Publication-oriented task allocation is chosen to maximize the expected re-

turns to publications today and dynamic returns to the continuation value. Employ-

ers consider how task allocations would affect public information about a worker

and her turnover tomorrow.

𝝉(1)
𝑖𝑡 𝑗

=𝑚𝑎𝑥{0, 𝑚𝑖𝑛{1, 𝝉∗𝑡 𝑗(𝐼𝑖𝑡 , 𝐼̃𝑖𝑡)}} (2.12)

𝝉∗𝑡 𝑗(𝐼 , 𝐼̃) B
1

𝜁
× 𝐸𝛼 |𝐼∪𝐼̃

−1 +
∑

𝑘∈{𝑃,𝑃𝑄,𝑄}
𝜙 𝑗(𝑘) ×

𝜕𝐸[𝐷𝑖𝑡(𝑘)|𝛼, 𝜏]
𝜕𝜏

︸                                                         ︷︷                                                         ︸
return to innovation today

+
𝛽/𝜙̄ 𝑗

𝜁
×

𝜕𝐸[𝑣(1)(𝑡+1)𝑗(𝐼
′, 𝐼̃′)|𝜏]

𝜕𝜏︸                  ︷︷                  ︸
dynamic return

The derivative of continuation value over task allocation can be negative if

workers who successfully publish are likely to leave the original firm.19 The lower

assignment of publication-oriented tasks in that case is similar to the inefficiently

lower training provided by firms that face higher turnover (e.g. Acemoglu and

Pischke 1998; Stevens 1994).

For an outside worker 𝑖 from 𝑗(𝑖 , 𝑡 − 1) ≠ 𝑗, firm 𝑗 only has access to public

17Information from 𝑡 to 𝑡 + 1 evolves according to the worker’s innovation outputs at 𝑡 as in (2.3),

with 𝐼′ = 𝐼𝑖𝑡 ∪ 𝐼̃𝑖𝑡 ∪ {𝐷𝑖𝑡(𝑃) +𝐷𝑖𝑡(𝑃𝑄)}, 𝐼̃′ = {(𝐷𝑖𝑡(𝑘))𝑘=𝑃,𝑃𝑄,𝑄}. See the continuation value in (7.16).

18Incumbent employers can set a higher wage for workers who are privately known to be better

than what the market believes. The higher wage itself (posted simultaneously) would not disclose

private information directly.

19The dynamic return, as expressed in (7.20), is negative when the cost of losing a worker exceeds

the benefits to internal reallocation of talent in the next period.
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information 𝐼𝑖𝑡 . Its value function is expected over the unknown private signals 𝐼̃𝑖𝑡 :

𝑣
(0)
𝑡 𝑗
(𝐼𝑖𝑡) = 𝑚𝑎𝑥𝒘 ,𝝉𝐸

˜𝑰 |𝐼𝑖𝑡 [ 𝑠
(0)
𝑗
(𝒘 , 𝑤−𝑗 ; 𝐼𝑖𝑡)︸             ︷︷             ︸

expected labor supply

×
(
𝐸𝛼 |𝐼𝑖𝑡∪˜𝑰 [𝑌𝑗(𝛼, 𝜏)|𝐼𝑖𝑡 ∪˜𝑰] + 𝛽 𝐸[𝑣(1)(𝑡+1)𝑗(𝐼

′, 𝐼̃′) |𝝉] −𝒘
)

︸                                                                ︷︷                                                                ︸
MRPL & discounted continuation value, net wage

]

(2.13)

The wage for a new worker is a weighted average of monopsonistic wages (marked

down by elasticity 𝜉(0)
𝑖𝑡 𝑗

(2.9) conditional on information (𝐼𝑖𝑡 , 𝐼̃):

𝒘(0)
𝑖𝑡 𝑗

=
©­«1 + 𝐸

𝐼̃ |𝐼𝑖𝑡


𝑠
(0)
𝑗

𝐸
𝐼̃ |𝐼𝑖𝑡 [𝑠

(0)
𝑗
]
× 𝜉(0)

𝑖𝑡 𝑗
(̃𝐼)

ª®¬
−1

(2.14)

× 𝐸
𝐼̃ |𝐼𝑖𝑡


𝑠
(0)
𝑗

𝐸
𝐼̃ |𝐼𝑖𝑡 [𝑠

(0)
𝑗
]
× 𝜉(0)

𝑖𝑡 𝑗
(̃𝐼) ×

(
𝐸𝛼 |𝐼𝑖𝑡∪𝐼̃ [𝑌𝑗(𝛼, 𝜏)] + 𝛽𝐸[𝑣(1)(𝑡+1)𝑗(𝐼

′, 𝐼̃′)|𝜏]
)

in which the weight on each possible 𝐼̃ equals to the probability of 𝐼̃ being the

private information given public 𝐼𝑖𝑡 and the fact that the worker moves into 𝑗.20

When incumbent employers set higher wages for workers with more positive 𝐼̃,

outside firms would lower the weights on such 𝐼̃, taking into account that movers

under asymmetric information are adversely selected (Gibbons and Katz 1991;

Greenwald 1986). Such weight adjustments lower the wages posted by outside

employers, at least partially correcting for the winner’s curse (Boozer 1994; Li 2013;

Hendricks and Porter 1988).

The optimal allocation of new workers to publication-oriented tasks is a

weighted average of 𝜏∗
𝑡 𝑗
(𝐼 , 𝐼̃), with the same weight on each unknown 𝐼̃ as in (2.14):

𝝉(0)
𝑖𝑡 𝑗

=𝐸
𝐼̃ |𝐼𝑖𝑡


𝑠
(0)
𝑗

𝐸
𝐼̃ |𝐼𝑖𝑡 [𝑠

(0)
𝑗
]
× 𝜏∗𝑡 𝑗(𝐼𝑖𝑡 , 𝐼̃)

 , 𝜏∗ defined in (2.12) (2.15)

20Since the wages enter the weights on the right-hand side, there are no analytic solutions, but I

will show the equilibrium wages can be solved via fixed-point iterations.

16



2.2.4 Equilibrium

I define a Markov Perfect Bayesian Nash Equilibrium (MPBNE) in this finite-

horizon discrete-time game, in which firms post profit-maximizing contracts con-

ditional on their current information about a worker, taking as given the contracts

posted by other firms.

Definition 1 (Markov Perfect Bayesian Equilibrium Under Imperfect Competition)
Given that workers are impatient and choose employers based on wages and GEV-distributed
preferences (2.6), a strategy profile {(𝑤𝑡 𝑗 , 𝜏𝑡 𝑗) : 𝑡 = 1...𝑇} is a Markov Perfect Bayesian
Nash Equilibrium in the finite-horizon game between firms if it satisfies:

• (𝑤(1)
𝑡 𝑗
(𝐼 , 𝐼̃), 𝜏(1)

𝑡 𝑗
(𝐼 , 𝐼̃)) maximize the expected value from an incumbent employee given

any information (𝐼 , 𝐼̃) at the same period;

• (𝑤(0)
𝑡 𝑗
(𝐼), 𝜏(0)

𝑡 𝑗
(𝐼))maximize the expected value from an outside worker given any public

information 𝐼 and rational belief about private information 𝐼̃ conditional on 𝐼.

I can write the equilibrium in Definition 1 as a system of equations on the

allocation of workers between firms, which are functions of the posted wages.21

Let 𝒘 denote the vector of wage strategies in equilibrium, and 𝒔 = 𝑠(𝒘) denote

the vector of expected labor supply (2.8) evaluated at 𝒘. The equilibrium can be

defined by:

𝒔 = 𝑠(𝑤(𝒔)) (2.16)

in which 𝒔, the vector of information-state-specific probability of workers choosing

each firm, is a fixed point of the composite function 𝑠 ◦ 𝑤. Following Rust (1994),

I show 𝑠 ◦ 𝑤 is a contraction mapping and therefore the MPBNE exists. I further

show the uniqueness of the choice probabilities (or wages up to scaling by positive

constants) given that workers make a static choice between firms based on wages

and idiosyncratic preferences (Proposition 1 in Appendix A2).

21The choice probabilities in equilibrium are not functions of publication-oriented tasks since

workers only value wages and idiosyncratic preferences. We relax this restriction in the extension

with forward-looking workers (Appendix A4).
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The allocation to publication-oriented tasks in equilibrium is very similar to

firms’ provision of general skill training. Firms assign more ability-revealing tasks

when information about workers is less public (Acemoglu and Pischke 1998), and

when they have more monopsony power (Manning 2003; Stevens 1994). Under

perfect competition (
𝑏
𝜌𝐺

→ ∞), workers who are not credit-constrained bear all

costs of ability-revealing tasks and are paid their full marginal product of labor as

in Becker (1964) (see Proposition 2 in Appendix A2).

2.3 Model Predictions

I discuss the implications of information revelation on inter-firm mobility. I

focus on workers from less productive firms, and make an additional assumption:

in the nest 𝐺 = nontop firms, the probability of re-entering the labor market (2.5)

satisfies: ∀ information 𝐼 , 𝐼′: 𝑃𝑟(𝛼 = 𝐻 |𝐼) > 𝑃𝑟(𝛼 = 𝐻 |𝐼′) → 𝜆(𝐼) > 𝜆(𝐼′). Workers

from nontop firms are at least as likely to re-enter the job market as coworkers with

a lower market belief about their ability. In the predictions below, the changes in job

mobility when new information becomes public are driven by the changes in the

wages posted by employers, rather than arbitrary changes in 𝜆’s at which workers

get on the job market.

Prediction 1 (Job Mobility in Response to Publications) Conditional on public in-
formation about research ability, workers who publish a paper while being employed by less
productive firms are

a) more likely to move to a new firm,
b) more likely to move to firms with higher returns to innovation

in the next year than coworkers without a publication.

Publications improve the market belief about if a worker is 𝐻-ability. The

equilibrium wages across firms increase in response to the positive signal. But im-

portantly, firms with a higher return to publications 𝜙 𝑗(𝑃·) assign more publication-

oriented tasks to the same worker. The complementarity between firms and workers
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in equilibrium leads to a larger wage increase at more productive firms. As a result,

the model predicts an increase in inter-firm mobility, and an increase in upward

mobility for workers who publish a paper at less productive firms.

Prediction 2 (Job Mobility under Asymmetric Information: 𝑫𝒊𝒕(𝑷) vs. 𝑫𝒊𝒕(𝑷𝑸) )
Workers who have produced a high-quality paper with a matched patent, i.e. 𝐷𝑖𝑡(𝑃𝑄) = 1,
while being employed by less productive firms are

a) less likely to leave employer 𝑗(𝑖 , 𝑡)when the presence of a matched patent 𝐷𝑖𝑡(𝑃𝑄) = 1

is private information;
b) more likely to leave and move upward after 𝐷𝑖𝑡(𝑃𝑄) = 1 is revealed.

than coworkers with papers but no matched patents 𝐷𝑖𝑡(𝑃) = 1.

The second prediction relies on the assumption that at the beginning of (𝑡 + 1),

the outside labor market can see any publication during 𝑡 but cannot differentiate

between 𝐷𝑖𝑡(𝑃) and 𝐷𝑖𝑡(𝑃𝑄). Incumbent employers set a higher wage based on a

more favorable private belief𝑃𝑟(𝐻 |𝐼∪𝐼̃) > 𝑃𝑟(𝐻 |𝐼)when𝐷𝑖𝑡(𝑃𝑄) = 1, and therefore

reduces the turnover of 𝐷𝑖𝑡(𝑃𝑄) = 1 workers relative to 𝐷𝑖𝑡(𝑃) = 1 coworkers who

produce papers without a matched patent. Once the matched patent is revealed,

Prediction 1 applies (see the complete proof in Appendix A2).

Prediction 3 (Job Mobility under Asymmetric Information: 𝑫𝒊𝒕(𝑸) ) Workers who
produce a patent application unrelated to any paper, 𝐷𝑖𝑡(𝑄) = 1, experience a delayed in-
crease in job mobility relative to similar coworkers with 𝐷𝑖𝑡(𝑄) = 0.

This prediction can be viewed as a corollary of Prediction 2. Patents unrelated

to papers, denoted by 𝑄, are also revealed with a delay. 𝐷𝑖𝑡(𝑄) = 1 workers are

also predicted to stay at the incumbent longer but move once the positive signal

becomes public information.

I test the model predictions in Section 4, and estimate the model to quantify

the role of employer learning in the efficiency of talent (re)allocation in Section 5.
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3 Data

I collected data on the career trajectories and research outputs of Ph.D. com-

puter scientists. This section discusses the matching between Ph.D. dissertation

records and public LinkedIn profiles, and measures of on-the-job research that

include conference papers and patent applications.

3.1 Ph.D. Graduates in Computer Science

I focus on Ph.D. graduates in CS or closely related fields, who, like eco-

nomics Ph.D.s, may take a tenure-track or postdoc job in academia, or a job outside

academia that can also be research-intensive.22 The share of new CS Ph.D.s enter-

ing the industry as opposed to academia has been increasing over the past 20 years

and has been over 50% since 2017 (Appendix Figure B3). On the ProQuest Theses

and Dissertation Database, I found about 81,000 Ph.D. dissertations in Computer

Science or Electrical Engineering from the top 60 CS schools in the United States,

between 1980 and 2021.23 Each dissertation provides the full name of the doctoral

recipient, school, and year of PhD.24

3.2 Public LinkedIn Profiles of CS Ph.D.’s

I developed a program that acts as a recruiter and views public profiles on

LinkedIn, the largest online professional network. For each person in the disser-

tation sample, I submitted a web query that searches by the person’s name, PhD

22See Appendix Figure B2 for research scientist job ads. CS Ph.D.s may also work as engineers,

but they often start as senior software engineers or as research engineers who can also publish

papers.

23I use the U.S. ranking of computer science departments on CSRankings, which is developed

and maintained by Emery Berger at UMass Amherst.

24Appendix Table B2 displays the number of dissertations by year.
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institution, and degree information.25 About 51% queries returned at least one

LinkedIn profile, resulting in 41,000 fully matched profiles in total.26

Each profile is formatted as a résumé. The program collects public infor-

mation such as education background and employment history. I constructed a

longitudinal dataset of post-Ph.D. job history for the fully matched LinkedIn pro-

files. On average a CS Ph.D. has 2.1 industry employers, 0.2 postdoc employers, and

0.3 academic (tenure-track) employers after Ph.D. (Table B5). For each person×year,

I kept the primary employer and the corresponding job title.27 A job-to-job move-

ment in year 𝑡 is defined as a change in one’s primary employer in comparison with

her employer next year: 𝑗(𝑖 , 𝑡) ≠ 𝑗(𝑖 , 𝑡 + 1). Years without any employer would not

be considered as a job movement. About 12% of workers at non-top firms move

to a new employer per year, whereas workers at top firms or in academia are less

mobile (Table B6).

3.3 On-the-job Research

3.3.1 Computer Science Papers

To measure the research output of Ph.D. computer scientists, I collected pa-

pers published in 80 CS conferences and two machine learning journals, which

are used to rank CS departments (CSRankings). I search for papers at each

conference/journal×year on Scopus, a large-scale publication database produced

25Appendix Figure B5 shows a sample query on LinkedIn Recruiter Platform. A profile is

considered matched to the PhD graduate only if the full name and PhD institution are matched

exactly, and the year of Ph.D. is the same whenever available on the profile.

26See Appendix B for details. The matching rate is higher for more recent cohorts (Figure B3).

LinkedIn was first launched in 2003, and its members grew from 37 million in 2009 to 875 million

in 2023.(https://www.businessofapps.com/data/linkedin-statistics/).
27If there is more than one employer in a year, I rank the jobs in the order of 1) full-time position

(over contract or visiting), 2) number of months on the job during the year, and 3) tenure at the

employer.
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by Elsevier.28 Each paper comes with a complete list of authors and their affiliations,

which indicate the employer of an author at the time of publication.29

To match papers with education and job histories, I cleaned and harmo-

nized author affiliations listed on CS papers, Ph.D. institutions and employers

on LinkedIn. A paper matched to an author’s Ph.D. institution by the time she

graduates is labeled as pre-Ph.D. research. After Ph.D., a paper is considered as

on-the-job research if the author affiliation matches with her employer at the time of

publication.30 About 28% of matched computer scientists have at least one on-the-

job research publication post Ph.D. (Table B5). The publication rate at person-year

level is higher at top firms: 10% of employees of top firms publish a paper per year,

versus 2% of employees of non-top firms (Table B6).

3.3.2 Paper-Patent Matches

Firms often file patent applications to protect the inventions disclosed in a

research publication. I establish a potential paper-patent linkage if the following

conditions are satisfied:

1. The majority of authors in the paper are also inventors in the patent

application and vice versa.

2. A patent assignee can be matched to an author’s affiliation on the paper,

which is also her current employer as shown on LinkedIn.

3. The patent application is initially filed between [−2, 1] years relative to

the publication of the paper (using conference date).31

28I am especially grateful to Anna Sun for her help with the Scopus Search API.

29I cross-validate the data from Scopus by merging it with paper-author records on DBLP, a

popular computer science bibliography (see Appendix B for details).

30The publication cycle is significantly shorter in computer science. It is unlikely for a dissertation

chapter to be published as a conference proceeding years later. I further check if coauthors on a

paper are affiliated with the Ph.D. school or with the current employer. Roughly 1% of post-PhD

publications have the majority of coauthors affiliated with the Ph.D. school, and are excluded from

on-the-job research production.

31The patent laws in the U.S. allow the inventors to apply for a domestic patent for inventions that
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4. Text is similar: the 𝑙2 norm between the vector embedding of the

paper’s title plus abstract and the embedding of the patent’s is ≤ 0.33.

32

For each paper, I keep the best matched patent application based on the number

of team members in common, similarity between the abstracts, and the closeness

of timing. About 25% of papers by CS Ph.D.’s working in the industry, and 5%

of papers by those in academia, are accompanied by a patent application. 90% of

the matched patent applications are filed before the research paper shows up at

a conference. Table 2 and Appendix Table B7 provides examples of paper-patent

matches. A matched pair may have different titles, but the abstracts are similar. CS

papers tend to be shorter, while patent applications contain more technical details

and are more precise about contributions that can be claimed as inventions.

Table 2: Examples of CS Papers and Matched Patent Applications

Firm Team Text Distance Paper Matched Patent Application

Yahoo 100% 0.233 UNBIASED ONLINE AC-

TIVE LEARNING IN DATA

STREAMS; 08/2011

ONLINE ACTIVE LEARN-

ING IN USER-GENERATED

CONTENT STREAMS; Filed:

10/2011, Published: 05/2013

Adobe 80% 0.273 FORECASTING HUMAN

DYNAMICS FROM STATIC

IMAGES; 07/2017

FORECASTING MULTI-

PLE POSES BASED ON A

GRAPHICAL IMAGE; Filed:

04/2017, Published: 10/2018

Figure 3 shows that papers with a matched patent are higher quality on

average. In the first year, they receive roughly the same number of citations as

those without a matched patent. But the gap starts to expand around two years

are disclosed in any publication no earlier than a year ago. In most other countries, inventions that

have been disclosed, for example via a research paper, cannot be filed as a patent application.

32The text embedding of a paper or a patent application was obtained via GPT4-ada, a state-of-

the-art large language model trained by OpenAI. The threshold for the distance between a paper’s

embedding and a patent’s embedding is selected based on the ROC curve in Appendix Figure B6

to balance between false positive and false negative rates.The norm of an embedding vector is one.

Ranking paper-patent pairs by 𝑙2-norm between vectors is equivalent to ranking them by cosine

distance.
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Figure 3: Citations Received by Papers With vs. Without a Matched Patent Appli-

cation
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Notes: See Appendix B for details on the measure of paper citations and the reweighting

procedure to adjust for firm-year heterogeneity in patenting a CS paper.

after the paper becomes public, which coincides with the disclosure of patent

applications (Appendix Figure B1). The quality difference between papers with

or without a matched patent suggests: 1) incumbent employers have additional

information about the quality of a paper and can act on it by filing for a patent,

2) it takes time for outsiders to recognize valuable research and the divergence in

citations happens around the same time as the revelation of a matched patent.

3.3.3 Other Patent Applications

To obtain a more complete picture of innovation activity, I merged the panel

of CS Ph.D.s with US patent applications that are not related to papers (𝑄 in Figure

2). I require the assignee (firm) on the application to be the same as the inventor’s

employer as shown on LinkedIn, and the year of the initial filing to fall within the

years she works at the firm. Over 40% of the computer scientists have at least one
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patent application after PhD (Table B5).

4 Empirical Tests for Employer Learning

I present reduced form evidence - based on an event study style analysis - for

the presence of both public and private employer learning.

4.1 Public Learning: Mobility Responses to CS Papers

Figure 4: Differences in Inter-firm Mobility: With vs. Without a Paper
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Notes: The blue bars are unadjusted raw gaps in job mobility, whereas the yellow bars are adjusted

in a regression that controls for Ph.D. school, experience since Ph.D., position types, and firm-year

fixed effects. 𝜇0 refers to the mean mobility among workers without a new CS paper.

To test for public learning in Prediction 1, I compare the job mobility between

workers who produce a CS paper and their coworkers without a paper. Figure 4(a)

first shows the raw difference (blue bars) in inter-firm mobility between these two

groups. At nontop firms, workers who produce a paper are on average 4 pp or 35%

more likely to move to a new firm the next year. This difference remains significant

(yellow bar) when I control for firm-year fixed effects to compare coworkers at the

same firm in the same year, and additional worker characteristics such as PhD

school and cohort, experience and current position types. With the same set of

controls, I also find a significant but smaller increase in mobility when workers in
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academia publish a new paper, but there is no change in inter-firm mobility for

workers who are already at the top firms.33 Given the lower publication rate on

average at nontop firms, I interpret them as less innovative firms relative to the

top firms. The increase in job mobility when employees at nontop firms publish a

paper provides evidence for public employer learning in Prediction 1(a).

Workers who publish at nontop firms are also more likely to move up the

job ladder (Figure 1). This pattern is further confirmed by the regression-adjusted

estimates in Figure 4(b). Conditional on origin, workers with a publication are

twice as likely to move from a nontop firm to a top firm the next year relative to

similar coworkers. The results are also robust when conditioning on person fixed

effects (Appendix Table C2). Academics who publish are also more likely to move

to top firms but at much lower rates. Publications appear to help employees at top

firms stay within the top tier, but the difference is not statistically significant.

4.2 Asymmetric Learning: Papers vs. Patent Applications

To provide evidence on the importance of asymmetric learning, I use an event-

study framework to analyze job mobility in the years following a new paper/patent

combination. Recall that the combinations shown in Figure 2 are denoted by:

𝐷𝑖𝑡(𝑃) = 1 if a worker has CS publications but none of which are matched to patent

applications, 𝐷𝑖𝑡(𝑃𝑄) = 1 if she has any paper with a matched patent application,

and 𝐷𝑖𝑡(𝑄) = 1 if she has a newly filed patent with no related paper.

Due to the delayed disclosure of patent applications, in the index year 𝑡 the

outside employers cannot differentiate between 𝐷𝑖𝑡(𝑃) and 𝐷𝑖𝑡(𝑃𝑄) when they see

33“Academia” includes postdocs and professors. The raw difference in academia is negative in

Figure 4(a), but it is driven by the fact that professors publish papers at higher rates than postdocs

but are less mobile. Once I control for position type, I find a 0.5 pp significant increase in job

mobility in academia.
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a publication. Whether a worker applies for patents unrelated to papers, 𝐷𝑖𝑡(𝑄),

is also not revealed immediately. In three years, 95% of the patent applications

will become public information (Appendix Figure B1). Define Lagged-𝐷𝑖𝑡(𝑃𝑄) = 1

if a worker produces any paper with a matched patent application in the past

three years. It can be differentiated from Lagged-𝐷𝑖𝑡(𝑃), which indicates having a

publication but no matched patent during [𝑡 − 3, 𝑡 − 1]. I estimate:

𝑀𝑖𝑡 =
∑

𝑘∈{𝑃, 𝑃𝑄, 𝑄}
𝜷𝒌 × 𝐷𝑖𝑡(𝑘)︸                       ︷︷                       ︸

signals about new outputs

+
∑

𝑘∈{𝑃, 𝑃𝑄, 𝑄}
𝜸𝒌 × Lagged-𝐷𝑖𝑡(𝑘)︸                                   ︷︷                                   ︸

signals about lagged outputs [𝑡−3,𝑡−1]

(4.1)

+ 𝑊 ′
𝑖𝑡 Γ︸︷︷︸

controls

+𝜇𝑗(𝑖 ,𝑡), 𝑡︸ ︷︷ ︸
firm-yr

+𝜉𝑖𝑡

where 𝑀𝑖𝑡 is a mobility outcome at person×year level, which can be any movement

between firms, or a movement into a top firm. The firm-year fixed effects, denoted

by 𝜇𝑗(𝑖 ,𝑡),𝑡 , absorb firm-specific shocks such as a layoff, and allow me to compare

workers within the same firm. 𝑊𝑖𝑡 is a vector of worker characteristics such as

educational background, gender (from first names or profile pictures), experience

since Ph.D., and position types (e.g., engineers vs. scientists).

The coefficient 𝜷𝑘 represents the mobility difference between workers who

produce 𝐷𝑖𝑡(𝑘) = 1 and those with neither a paper nor a patent, and 𝜸𝑘 represents

the gap between workers with Lagged-𝐷𝑖𝑡(𝑘) = 1 and those without any innovation

in the past three years. For workers who are employed by less innovative nontop
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firms, the model predictions in Section 2.3 can be translated to:

Prediction 1 → 𝜷𝑃 > 0, 𝜷𝑃𝑄 > 0 (4.2)

Prediction 2(a) → 𝜷𝑃𝑄 < 𝜷𝑃 , whereas 2(b) → 𝜸𝑃𝑄 > 𝜸𝑃 and 𝜸𝑃𝑄 > 0

Prediction 3 → 𝜸𝑄 > 0

Table 3: Effects of Papers & Matched Patents on Job Mobility

Move between Firms Move into Top Firms

(1) Nontop (2) Top (3) Academia (4) Nontop (5) Top (6) Academia

CS Papers at t : Dit(P) vs. 𝑫𝒊𝒕(𝑷𝑸)

Paper only 0.0351 -0.0012 0.0052 0.0186 0.0032 0.0018

(0.0060) (0.0042) (0.0024) (0.0034) (0.0036) (0.0009)

Paper+Matched Patent 0.0200 0.0016 -0.0023 0.0135 0.0020 0.0020

(0.0102) (0.0062) (0.0063) (0.0059) (0.0055) (0.0027)

CS Papers in [t − 3, t − 1]: Lagged-𝑫𝒊𝒕(𝑷) vs. Lagged-𝑫𝒊𝒕(𝑷𝑸)

Paper only 0.0009 0.0009 0.0077 0.0036 -0.0003 0.0047

(0.0035) (0.0031) (0.0022) (0.0017) (0.0028) (0.0008)

Paper+Matched Patent 0.0195 0.0068 0.0039 0.0107 0.0003 0.0053

(0.0065) (0.0051) (0.0045) (0.0039) (0.0047) (0.0020)

Patents unrelated to CS Papers

𝐷𝑖𝑡(𝑄) -0.0125 -0.0047 -0.0052 -0.0003 0.0084 0.0022

(0.0023) (0.0029) (0.0039) (0.0011) (0.0025) (0.0013)

Lagged-𝐷𝑖𝑡(𝑄) 0.0052 -0.0013 0.0058 0.0023 0.0033 0.0004

(0.0018) (0.0024) (0.0027) (0.0009) (0.0021) (0.0009)

Mean .1141 .0655 .0746 .0180 .9485 .0067

N 224K 66K 121K 224K 66K 121K

Adj. 𝑅2
.1377 .0179 .1167 .0350 .0112 -.0109

Notes: This table presents regression estimates of equation (4.1). The estimation sample is at

Person×Year level, restricted to years with nonmissing full-time employment after PhD. The first

three columns show the results for any move between firms as the dependent variable, 𝑀𝑖𝑡 = 1[𝑗(𝑖 , 𝑡+
1) ≠ 𝑗(𝑖 , 𝑡)], separately by the group of origin 𝑗(𝑖 , 𝑡) ∈ {Non-top Firms, Top Firms,Academia}. The

next three columns have 𝑀𝑖𝑡 = 1[𝑗(𝑖 , 𝑡 + 1) ∈ Top Firms] as the dependent variable.

All regressions control for education background (whether a bachelor’s degree was granted in the

United States, and Ph.D. school fixed effect), a cubic polynomial of years since Ph.D. as experience

(divided by 10), current position types (scientist/engineer/manager), seniority or academic job

rank based on job titles on LinkedIn, and firm-year fixed effects. Standard errors are robust and

clustered at (Ph.D. school, graduation cohort) level.
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I estimate the model (4.1) separately for workers who are currently employed

by nontop firms, top firms, or academia as in Figure 4. For each person, I keep

years of full-time employment post Ph.D. and post 2000.34

At nontop firms, a worker who has a new paper but no matched patent is 3.5

pp (𝑡 ≈ 6) or 26.3% more likely to move than a coworker with similar experience

but no innovation (column 1 of Table 3).35 Workers who produce a paper with a

matched patent, 𝐷𝑖𝑡(𝑃𝑄) = 1, also see a 2.0 pp or 15.0% increase in next-year inter-

firm mobility, but to a lesser extent than workers with 𝐷𝑖𝑡(𝑃) = 1. The positive

effects of having any paper for next-year mobility among employees at non-top

firms is consistent with Figure 4 and provides evidence for Prediction 1 (4.2) on

public learning. The smaller mobility effect of having a paper with a matched

patent than of having just a paper is consistent with Prediction 2a, though the gap

(𝛽̂𝑃𝑄 − 𝛽̂𝑃) is not significantly different from zero.

There is stronger evidence for asymmetric learning in the mobility responses

to lagged innovation outputs, as summarized in 2b (4.2). Holding constant current-

period publications, having any paper but not matched patent in the past three

years no longer matter for inter-firm mobility even for workers at nontop firms. In

contrast, the presence of a paper with a matched patent during [𝑡−3, 𝑡−1], denoted

by Lagged-𝐷𝑖𝑡(𝑃𝑄) = 1, predicts a 𝛾̂𝑃𝑄 = 2.0-pp or 14% significant increase in job

mobility.

Papers in index year 𝑡 or the past three years do not predict a job movement out

34There are employment records before 2000 for earlier Ph.D. cohorts but given the relatively

short history of CS conferences, I collected publications data post 2000.

35Appendix Table C1 shows estimates of Poisson regression:

𝐸[𝑀𝑖𝑡 |𝐷𝑖𝑡 , Lagged-𝐷𝑖𝑡 ,𝑊𝑖𝑡 , 𝑗(𝑖 , 𝑡)] =𝑒𝑥𝑝 ©­«
∑

𝑘∈{𝑃, 𝑃𝑄, 𝑄}
𝜷𝒌 𝐷𝑖𝑡(𝑘) +

∑
𝑘∈{𝑃, 𝑃𝑄, 𝑄}

𝜸𝒌 Lagged-𝐷𝑖𝑡(𝑘) +𝑊 ′
𝑖𝑡 Γ + 𝜇𝑗(𝑖 ,𝑡), 𝑡

ª®¬
(4.3)
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of top firms, which are often viewed as the top of the job ladder in the tech industry

(column 2). Column 3 shows that productive authors in academia experience a

0.5-0.8 pp increase in mobility relative to coworkers without a paper. Whether a

paper has a matched patent or not, however, does not matter in academia, where

less than 5% of CS papers are filed as patent applications.36

Columns 4-6 of Table 3 presents the estimates of the event study model (4.1)

defining the outcome of interest as mobility to a top firm in the next year. For

workers at nontop firms, I interpret moving to a top firm as moving up the job

ladder to a more productive firm, though of course there are some highly productive

startups (many of which ultimately are acquired by the top firms). I consider

alternative upward mobility measures in Section 4.3. I find a 1.4-1.9 pp increase in

upward mobility when employees of nontop firms publish a new paper, consistent

with Figure 1b and supporting Prediction 1b. Lagged papers with a matched

patent predict another 1 pp or 30% increase in upward mobility, further providing

evidence for asymmetric learning from initially private information. For workers

in academia (column 6), papers predict moving to a top firm, which may represent

a wage increase (Section 4.3). I do not find evidence that CS papers (and matched

patents) matter for retention or movement between top firms (column 5). This is

consistent with the model predictions that positive signals matter more for workers

at nontop firms who receive a larger wage increase on the market than those who

are already at the top of the job ladder.37

Finally, I show a delayed mobility response to patent applications that are

36Papers that are filed as patent applications by academics often represent collaborations with

the industry and matter less for tenure evaluation within academia.

37Employees at top firms may also rather move to a non-research job internally than leave a top

firm. I show in Section 4.3 that publications are positively associated with a promotion in top firms,

which typically reflect a wage increase, and negatively correlated with becoming an engineer as

opposed to scientist within top firms.
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unrelated to CS papers, consistent with Prediction 3. Workers who file new patent

applications are less likely to leave their incumbent employers in the same year

(𝛽̂𝑄 < 0 in columns 1-3). But I find a positive relationship between lagged patent

applications during [𝑡 − 3, 𝑡 − 1] and job mobility among workers at nontop firms

(columns 1 and 4) in support of (4.2). In comparison with the mobility effects of

CS papers, traditional patenting is less predictive of job movements for computer

scientists. This feature is not surprising given the emphasis on publications in job

ads for computer scientists (Appendix Figure B2).

In summary, computer scientists who publish papers at nontop firms are more

likely to move to a new firm and move up the job ladder, providing evidence for

public employer learning from CS papers. At nontop firms, workers who produce

papers with matched patents, which are initially private information, experience a

delayed increase in job mobility. Alternative tests that exploit within-person varia-

tion in innovation output provide similar evidence of employer learning (Appendix

Table C2). In addition, I show in Appendix Figure C1 that the mobility responses

to publications and matched patents are larger for less experienced workers, con-

sistent with the hypothesis that learning is most important at early career stages as

has been emphasized in the existing literature (e.g., Lange 2007).

4.3 Additional Evidence of Learning: Wage Growth and Promotions

The evidence of employer learning is not limited to the inter-firm mobility

responses above. I summarize additional effects of publications and matched

patents on: (1) moving to a higher-wage firm based on the H1-B salary data; (2)

moving from industry to academia; (3) within-firm promotions and reallocation

according to job titles.

An alternative definition of upward mobility is moving to a higher-paid firm.
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Without access to administrative wage records, I use the average wages posted

for H1-B or PERM workers at firm×year or firm×year×position levels. At nontop

firms, workers with a new paper are 2-3 pp more likely to move to a higher-wage

firm the next year (Appendix Table C3). Lagged papers with matched patents also

increase likelihood of moving to a higher-wage employer, and the likelihood of

moving to a higher-wage position, both of which support asymmetric learning as

in Prediction 2.

Publishing a paper also increases the chance that workers in the industry move

to academia the next year (columns 5-6 of Table C3). Employees who publish at

either nontop or top firms are twice as likely to move to an academic employer than

their coworkers. Whether the paper has a matched patent application, which may

indicate higher commercialization value, matters less for getting a job in academia.

The role of publications in helping academia identify talent from the industry

is policy relevant, given the rising concerns about the competition for AI talent

between academia and the private sector (Gofman and Jin 2022).

Promotions are another set of important mobility outcomes. Pastorino (2023)

estimates that employer learning explains 25% of early-career wage growth within

a firm, and promotions are responsible for almost all of the impact of learning on

wages. I consider a change in job titles as a promotion if the new title includes key-

words such as “senior”.38 I estimate (4.1) with internal promotion as the outcome

variable on stayers who are not moving to a new firm the next year. CS papers

(new or lagged with matched patents) are positively associated with promotions

(columns 1-3 of Appendix Table C4). Although incumbent employers can differen-

tiate between 𝐷𝑖𝑡(𝑃) and 𝐷𝑖𝑡(𝑃𝑄) without any delay, I do not find that workers who

38For example, a change from “engineer” to “senior engineer” or “staff engineer” is coded as a

promotion. In academia, getting tenured is a promotion.
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produce a paper with a matched patent are getting promoted faster than those with

only a paper. This finding supports the promotion-as-signal model in Waldman

(1984), which predicts that incumbent employers would delay promotions (public

signals) to retain privately known talent longer.

That being said, there is evidence of internal reallocation of workers even

under the presence of asymmetric information. Column 4 of Table C4 shows that

𝐷𝑖𝑡(𝑃𝑄) workers at nontop firms are 1 pp more likely than 𝐷𝑖𝑡(𝑃) = 1 workers

to become a research scientist the next year.39 In contrast, innovation outputs are

less predictive of a worker becoming a manager (columns 8-9), and appear to be

negatively correlated with becoming a engineer at top firms (column 7).

5 Structural Analysis

The event-study style analysis above provides evidence of both public and

private learning about CS researchers. Assessing the quantitative importance of

employer learning for the efficiency of labor allocation, however, requires a struc-

tural analysis. I therefore turn to estimate the model in Section 2. To preview the

results, I find that learning from on-the-job research matters as much as learning

from initial information such as PhD ranking. Disclosing patent applications one

year faster has a small but positive impact on overall innovation, which is driven

by faster sorting of high-ability workers into top firms.

5.1 Model Estimation

I discuss the structural parameters and present the estimation procedure

based on the nested fixed point algorithm (Rust 1987; Rust 1994). The goal is to find

39Moving from a non-scientist to a scientist role is not coded as a promotion, unless the job title

includes keyword such as “senior”.
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estimates that maximize the joint likelihood of job histories and innovation outputs

of computer scientists in the first five years post PhD.40 41 I show the model fit and

the learning process evaluated at the maximum likelihood estimates.

5.1.1 Parameters and Identification

Table 4 provides an overview of the main ingredients of the model, which are

parameters that govern: (1) prior belief conditional on initial information, (2) labor

supply, (3) firm productivity, and (4) worker productivity.

Table 4: Overview of Model Parameters

Parameters Description

I. Common Prior
𝛿 Given initial information 𝐼𝑖1, prior:

𝑃𝑟(𝛼𝑖 = 𝐻 |𝐼𝑖1; 𝛿) = 𝑒𝑥𝑝 (𝛿′𝑋(𝐼𝑖1))
1 + 𝑒𝑥𝑝 (𝛿′𝑋(𝐼𝑖1))

(5.1)

II. Labor Supply
𝑏, {𝜌𝐺}, {𝜂·𝐺} Worker’s utility (2.6): weight on log wage and GEV-preferences (2.4)

{𝜆}, {Λ} Prob. re-entering the labor market (2.5) and moving bet. academia

and industry.

III. Firm Productivity
𝜙 𝑗 Baseline productivity of 16 groups of employers (Appendix Table

D2)

{𝜙 𝑗(𝑃), 𝜙 𝑗(𝑄)} Returns to each type of innovation: patent 𝜙 𝑗(𝑄) calibrated, 𝜙 𝑗(𝑃𝑄)
is assumed to be a weighted avg of 𝜙 𝑗(𝑃) and 𝜙 𝑗(𝑄)

IV. Worker Productivity
𝑝𝛼 , 𝑝̃𝛼 , 𝑞𝛼 Ability-specific productivity in innovation (Table 1)

First, I assume employers form a common prior based on initial information

40The first few years are particularly important for employer learning (Altonji and Pierret 2001;

Farber and Gibbons 1996; Lange 2007; Pallais 2014). I also show in Appendix Figure C1 that the

mobility responses to innovation signals are higher for less experienced workers.

41I assume employer belief is held fixed after 𝑡 = 5. A simple terminal value is defined as the

discounted sum of rents from a worker, given that she is expected to stay = 1/𝜆(𝐼𝑖5) years beyond

𝑡 = 5 (see equation 7.4 in Appendix A1).
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𝐼𝑖1 about a new Ph.D., comprising (i) the rank of their PhD institution, (ii) the

number of papers published during graduate school, and (iii) the type of their

first job (i.e., the “nest” G of their first employer). This information is combined

with coefficients 𝛿 in equation (5.1) to specify the prior probability that a given

individual has high productivity.42

Second, the parameters of the labor supply model defined in (2.7) include the

utility weight 𝑏 on log wage, parameters in the GEV-distributed preferences 𝜌𝐺, and

additional parameters 𝜂𝐺 that enter the worker’s utility for all employers in nest𝐺.43

The ratio
𝑏
𝜌𝐺

, the probability of being on the job market 𝜆’s, and the exogenous rate

Λ’s at which academia is open to industry employees and vice versa, jointly enter

the labor supply elasticity (2.9) that determines the markdown of wages relative to

the expected revenue product of labor. These parameters are identified by revealed

preferences and variations in retention rates within and between nests.

There are more than seven thousand unique employers in the balanced panel

of workers. Following Bonhomme et al. (2022), I classify them into 16 meta-firms

and estimate meta-firm-specific productivity.44. The classification is shown in Ap-

pendix Table D2, and follows the nested structure of the labor supply model (equa-

tion 2.6). Specifically, I divide jobs in academia into four meta firms based on

academic ranking: two tenure track (nest 𝐺 = 1) and 2 post-doc / non-tenure track

employers (𝐺 = 2). The third nest comprises the top 6 tech companies, each as a

meta-firm on its own. Finally, I group the non-top employers into 6 meta-firms,

42Any information observed by employers but not by me is assumed to be absorbed

by the initial nest of a person’s first job, 𝐺𝑖1. Let 𝑟𝑖 denote the rank of PhD school,

𝑛𝑖 denote the number of papers before PhD. I define a vector of controls: 𝑋(𝐼𝑖1) =(
𝑟𝑖 , 𝑟

2

𝑖
, 𝑛𝑖 , 𝑛

2

𝑖
, 1[𝐺𝑖1 = Tenure-track], 1[𝐺𝑖1 = Postdoc], 1[𝐺𝑖1 = Top firms], 1[𝐺𝑖1 = Nontop firms]

)
.

43The nested logit choice probability is fully specified in equation (7.1) in Appendix A1.

44This grouping is equivalent to assuming that employers within each meta-firm are perfect

substitutes to workers, i.e. diversity between employers within a meta-firm is not valued, as

remarked in Dixit and Stiglitz (1977).
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grouped by their patenting activity. Each meta firm (henceforth 𝑗) has 4 productiv-

ity parameters as shown in equation (2.1): a baseline productivity 𝜙̄ 𝑗 , a return to

research publication 𝜙 𝑗(𝑃) that is estimated, a return to patents unrelated to publi-

cations 𝜙 𝑗(𝑄) that is calibrated, and a return to publications with matched patents

𝜙 𝑗(𝑃𝑄) as a weighted average of 𝜙 𝑗(𝑃) and 𝜙 𝑗(𝑄). 45 The baseline productivity 𝜙 𝑗

matters for the average wage and thus the size of a meta-firm. 𝜙 𝑗(𝑃) matters for the

allocation to publication-oriented tasks, and is identified from movers who become

more (less) likely to publish when moving to a higher (lower) 𝜙 𝑗(𝑃) employer.

The fourth set of parameters represents the ability-specific productivity in

Table 1. Conditional on information, coworkers who have different abilities would

be assigned the same innovation task (𝜏). The gap in their publication rate allows

me to identify the ability-specific publication rates, 𝑝𝐻 versus 𝑝𝐿.

5.1.2 Estimation Procedure

Denote by Γ the free parameters of the model in Table 4 other than the 𝛿

parameters of the prior (5.1). Given data on the each person’s employment by meta

firms { 𝑗(𝑖 , 𝑡)} and outputs 𝑑𝑖𝑡 B [𝑑𝑖𝑡(𝑃), 𝑑𝑖𝑡(𝑃𝑄), 𝑑𝑖𝑡(𝑄)], I search for estimates of

45I estimate a regression of any patent application on firm fixed effects and worker characteristics.

I rank nontop firms according to the estimated fixed effects, which are also used to calibrate 𝜙 𝑗(𝑄)
(Table D2). I calibrate 𝜙 𝑗(𝑃𝑄) = 2.25 × 𝜙 𝑗(𝑃) + 0.25 × 𝜙 𝑗(𝑄), which fits the data better than an

unweighted average.
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(𝛿, Γ) that solve:

𝑚𝑎𝑥(𝜹,𝚪) 𝑙𝑛

(∏
𝑖

𝐿𝑖({ 𝑗(𝑖 , 𝑡), 𝑑𝑖𝑡} |𝐼𝑖1; 𝜹, 𝚪)
)

(5.2)

=
∑
𝑖

𝑙𝑛
©­­­«
∑
𝜶

𝑃𝑟(𝛼 |𝐼𝑖1; 𝜹)︸       ︷︷       ︸
prior

×𝐿𝑖({ 𝑗(𝑖 , 𝑡), 𝑑𝑖𝑡} |𝐼𝑖1, 𝜶; 𝚪)
ª®®®¬

in which 𝐿𝑖(·|𝐼𝑖1, 𝜶; 𝚪) =
∏
𝑡

𝒔𝒊𝒕 𝒋(𝒊 ,𝒕)(𝐼𝑖𝑡 , 𝐼̃𝑖𝑡 ; 𝚪)︸               ︷︷               ︸
labor supply

×𝑃𝑟(𝐷𝑖𝑡 = 𝑑𝑖𝑡 |𝜶, 𝝉𝒊𝒕 𝒋(𝒊 ,𝒕); 𝚪)︸                           ︷︷                           ︸
innovation output

in which information evolves according to (2.3), and the unobserved ability 𝛼𝑖 is

treated as a random effect. The equilibrium labor supply is solved as the fixed point

given a guess for Γ. {𝜏𝑖𝑡 𝑗(𝑖 ,𝑡)} are the task allocations in equilibrium. Following Rust

(1987), I use a nested fixed point algorithm with three steps:

Step 0. Given a guess of 𝛿 on initial information, form the prior (5.1) shared

by employers.

Step 1. Given a guess of Γ, solve each employer’s problem backward from

𝑡 = 𝑇: at every possible information state (𝐼 , 𝐼̃), calculate the labor

supply {𝑠𝑡 𝑗} given the wages posted by firms, and iterate until I reach

the fixed point 𝑠𝑡 𝑗(𝐼 , 𝐼̃;Γ): 𝑠𝑡 𝑗(𝐼 , 𝐼̃;Γ) = 𝑠
(
𝑤

(
𝑠𝑡 𝑗(𝐼 , 𝐼̃;Γ)

))
.46

Step 2. Find the maximum likelihood estimates that solve (5.2). Parameters 𝛿
on initial information and other free parameters Γ are jointly estimated

as in econometric frameworks with unobserved heterogeneity (e.g.,

Card and Hyslop 2005, Wooldridge 2005).

5.1.3 Estimation Results

I estimate the model on a balanced panel of 18,860 workers who graduated

between 2005 and 2018 and have employment records in the first five years post

46See Proposition 1 for the existence of the fixed point in equation (2.16).

37



PhD.47 The predicted share of workers at each employer, found as the fixed point

(2.16) given the maximum-likelihood estimates for Γ (Table D3), falls roughly on

the 45-degree line that matches with the actual shares, as shown in Figure 5.

Figure 5: Model Fit: Allocation of Workers across Employers, 𝑠𝑡 𝑗 vs. 𝑠𝑡 𝑗

(a) 𝑡 = 1
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(b) 𝑡 = 5
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Notes: This figure shows the predicted share of workers at each meta-firm 𝑠𝑡 𝑗 against the

actual share 𝑠𝑡 𝑗 , at 𝑡 = 1 and 𝑡 = 5. Given the estimated parameters in Table D1, I forward

simulate the employment path and innovation outputs by each worker in the balanced

sample, holding fixed initial information including the initial nest at 𝑡 = 1 (see 5.1). In

the simulated sample, I compute 𝑠𝑡 𝑗 as the share of workers employed by 𝑗, at experience

𝑡 (yrs after PhD).

High-ability workers are estimated to be four times as likely to produce a paper

per unit of time on innovation tasks as the 𝐿-ability. Conditional on publishing

a paper, 𝐻 are more than twice as likely to have a patent application matched to

the paper, which indicates a higher quality innovation. 𝐻 is also more likely to

produce patents unrelated to papers than 𝐿, but the relative gap in patenting is

smaller than in research publications.48

Figure 6 displays the distribution of employer beliefs, separately for the top

10% cited computer scientists (as a proxy for 𝐻) versus the bottom 90%. At 𝑡 = 1

beliefs about these two groups overlap substantially. But employers appear to tell

47This sample is comparable to the full sample that I use to test for employer learning in Section

5 (see Table D3).

48These estimates validate the assumptions 𝑝𝐻 > 𝑝𝐿 , 𝑝̃𝐻 > 𝑝̃𝐿 , 𝑞𝐻 > 𝑞𝐿 under which model

predictions are derived.
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them apart quickly based on their research outputs after PhD. At 𝑡 = 5, there is an

obvious divergence of beliefs about the bottom 90% versus the top 10%. Comparing

the gap between posterior and prior across PhD institutions, I find that the market

overestimates the ability of graduates from the top 10 programs (see Appendix

Figure D1).

Figure 6: Histograms of Employer Beliefs: Top 10% Computer Scientists versus

Others

(a) 𝑡 = 1

0.0 0.2 0.4 0.6 0.8 1.0

t = 1: Employer Belief Pr(H|I∗t )

0

2

4

6

8

10

12

D
en

si
ty

Top 10% Computer Scientists

Others

(b) 𝑡 = 5

0.0 0.2 0.4 0.6 0.8 1.0

t = 5: Employer Belief Pr(H|I∗t )

0

2

4

6

8

10

12

D
en

si
ty

Top 10% Computer Scientists

Others

Notes: I rank computer scientists by their cumulative citations and total number of papers

and patent applications five years after PhD.

Tenure-track employers have the highest returns to research publications

(𝜙 𝑗(𝑃) in Table D2) and assign more innovation tasks given any employer belief

(Figure D2). Top firms (except for Apple) on average have higher returns to research

papers and assign more innovation tasks than nontop firms. The gap between top

and nontop firms in innovation tasks is larger for workers with employer belief in

the range of [0.20, 0.50], who have a nontrivial chance of being 𝐻-ability but are

not fully discovered yet. Such workers would be better off at a more productive

firm that provides more research opportunities.
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5.2 Impacts of Employer Learning on Allocative Efficiency

Given the estimated model, I assess the impact of employer learning on the

efficiency of labor allocation. To do so, I consider five mechanisms that matter for

workers’ sorting between employers and task allocations within a firm:

1. Employer learning from patents unrelated to papers, 𝐷𝑖𝑡(𝑄);
2. Employer learning from publications with a matched patent, 𝐷𝑖𝑡(𝑃𝑄);
3. Employer learning from research publications, 𝐷𝑖𝑡(𝑃) + 𝐷𝑖𝑡(𝑃𝑄);
4. Initial sorting between nests, 𝐺𝑖1;

5. Access to initial information 𝐼𝑖1 \ 𝐺𝑖1.

The first three mechanisms capture employer learning from on-the-job research

outputs after Ph.D., while the last two concern any initial information observed by

employers that shape the common prior about each worker and her sorting between

academia and industry at 𝑡 = 1. Each mechanism can change the allocation of labor

by affecting the evolution of employer beliefs.49

I measure the efficiency of talent allocation by the mean publication rate

of computer scientists, an outcome that is shaped by task allocation within each

firm and sorting of workers between firms. Figure 7(a) shows how this outcome

changes when I shut down the mechanisms one by one (in the order above), relative

to the benchmark where all mechanisms are at play.50 Shutting down learning from

patent applications unrelated to papers reduces publication rate by just 0.9%, which

makes sense as 𝐻 and 𝐿 are not as different in patenting as in producing papers.

49For example, if employers do not update their beliefs based on research publications, they

would not assign additional publication-oriented tasks internally to employees who publish, and

publication authors would also not receive higher wage offers from other firms than their coworkers

without a paper.

50The benchmark model I estimated takes all five mechanisms into account. Given (𝛿̂𝑀𝐿𝐸 , Γ̂𝑀𝐿𝐸)
in Table D1, I first forward-simulate the employment path and innovation output of workers without

shutting down any mechanism. The benchmark publication rate on the simulated sample is 9.23%,

similar to the mean observed in the estimation sample. In each counterfactual, I re-simulate the

data and compute the mean publication rate under the alternative set of mechanisms.
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The first substantial drop in publication rate occurs when I shut down employer

learning from CS publications. That is, employers no longer update their beliefs

based on whether workers have published. As a result, employers do not assign

more publication-oriented tasks to successful authors, nor are 𝐻-ability sorted into

more productive firms as efficiently as before. Together, employer learning from

innovation outputs {(𝐷𝑖𝑡(𝑃), 𝐷𝑖𝑡(𝑃𝑄), 𝐷𝑖𝑡(𝑄))} accounts for the 15.8% of the overall

publication rate.51 Appendix Figure D3 further shows that top firms and academic

employers experience suffer more when they do not learn from the innovation

output of workers.

Figure 7: Decomposition of Publication Rate (Efficiency of Talent Allocation)

Shutting down initial sorting between nests further reduces the publication

rate by 3.3%, while other initial information such as PhD school and papers before

PhD accounts for 11.7%. When all five learning mechanisms are removed, the

69.2% of publications remained are explained purely by firm heterogeneity and

51Appendix D4 provides a between-within decomposition and shows that 30% of the effect is

driven by between-firm sorting whereas the rest is explained by less efficient task alloctaion within

firms.
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worker heterogeneity.52

5.2.1 Shapley Value of Each Learning Mechanism

To address concerns that the counterfactual results in Figure 7 are shaped by

the order of the mechanisms, I estimate the average marginal impact of each mech-

anism on allocative efficiency a la Shapley (1953).53 I compute the counterfactual

publication outcome under 2
5

possible sets of mechanisms.54 The Shapley value of

mechanism 𝑚 ∈ M = {1, 2, 3, 4, 5} is:

𝑆𝑉𝑚 =
∑

𝑆⊆M\{𝑚}

|𝑆 |! × (|𝑀 | − |𝑆 | − 1)!
|𝑀 |! ×

(
𝐸

[
𝑝𝑖𝑡 |𝑆 ∪ {𝑚}; 𝛿̂, Γ̂

]
− 𝐸

[
𝑝𝑖𝑡 |𝑆; ; 𝛿̂, Γ̂

] )︸                                               ︷︷                                               ︸
Change in publication rate when adding mechanism 𝑚

(5.3)

As shown in Table 5, the five mechanisms jointly account for 31% of the

publication rate, consistent with the last bar in Figure 7. I normalize the Shapley

values of the five features such that they sum to one. The most important feature

is employer learning from the presence of CS papers, with a normalized Shapley

value of 49.9%.55 Initial information ranks second with an explanatory power

of 40.2%. Initial sorting based on information seen by employers but not by me

52𝐻 remains more productive in innovation than 𝐿, but without employer learning from either

initial information or subsequent outputs, 𝐻 and 𝐿 are assigned the same amount of innovation

task within each firm and move between firms at the same rates.

53Shapley (1953) has been applied to attribute model prediction or goodness-of-fit to individual

features (e.g., Grömping 2007, Lindeman and Gold 1980). Huneeus, Kroft, and Lim (2021) also uses

Shapley value to decompose the variance of earning inequality on multiple sources of variation in

their counterfactual analysis.

54For example, if the set of mechanisms included is {1, 2, 3}, the counterfactual data generation

allows employers to update beliefs based on innovation outputs after PhD, but the initial prior

about every worker equals to the mean prior 0.13 fitted on the original data. If the set is empty, only

worker ability and firm heterogeneity matter for innovation outcome.

55Since the model does not consider self-selection by workers, this estimate may be interpreted

as an upper bound of the role of employer learning in efficient allocation of labor.
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matters less with a mere value of 2%. Learning from patent applications which are

not disclosed immediately to outside employers explains the remaining 8%, which

are smaller than learning from publications but nonnegligible.

Table 5: Shapley Values of Employer Learning vs. Initial Conditions

Employer Learning Initial Conditions

Patent Paper-Patent Paper Initial Sorting Initial Info

Impact on Mean Publication Rate
𝑆𝑉𝑚 (5.3) 0.0014 0.0009 0.0142 0.0005 0.0114

Pct Change 1.51% 0.98% 15.39% 0.55% 12.40%

Normalized 𝑆𝑉𝑚 4.89% 3.18% 49.92% 1.78% 40.23%

Notes: This table shows the estimated Shapley value of each mechanism, the

percentage change relative to the benchmark outcome when all five mechanisms

are considered, and the normalized value such that they sum to one.

5.3 Asymmetric Learning on Efficiency

Would reducing asymmetric information improve the efficiency of talent al-

location? On one hand, increasing public information about workers can expedite

positive assortative matching between firms and workers. On the other hand, al-

location to ability-revealing tasks, like training, would be inefficiently lower when

current firms lose their information rents (e.g., Acemoglu and Pischke 1998).

I answer this question by considering a “symmetric” counterfactual where

𝐷𝑖𝑡(𝑃), 𝐷𝑖𝑡(𝑃𝑄), and 𝐷𝑖𝑡(𝑄) are disclosed simultaneously.56 Given the estimates

in Table D1, I forward simulate the employment path and research production by

workers, holding fixed the initial information. For the counterfactual, I begin with

the same set of workers, and find the equilibrium contracts set by employers under

simultaneous information disclosure.

56This scenario is possible if the patents office discloses patent applications immediately, or if

workers can announce patent applications themselves without worrying about a non-disclosure

agreement.
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Figure 8: Upward Mobility from Non-top to Top Firms, Asymmetric vs. Symmetric

(dashed)
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Figure 8 displays the upward mobility for workers who start at nontop firms

but produce different innovation output, under the asymmetric benchmark versus

the symmetric counterfactual. Workers with output 𝐷𝑖𝑡(𝑃𝑄) = 1 can be told apart

immediately from workers with a paper only 𝐷𝑖𝑡(𝑃) = 1 under the counterfactual.

Relative to the asymmetric benchmark, they move to top firms more quickly. In

contrast, workers who only have a paper, 𝐷𝑖𝑡(𝑃) = 1, or no paper at all are as likely

to move upward as before.57

The overall publication rate is 1% higher under symmetric disclosure (Table

6). Top firms experience a 5.5% increase in innovation output, while nontop firms

see a 2.4% decrease. The change in innovation outcomes comes from two sources:

1) faster sorting of productive workers from nontop to top firms, and 2) changes

in within-firm allocation to publication-oriented tasks. To decompose the change,

I hold fixed the task allocations made by firms under asymmetric learning in the

simulations for the symmetric counterfactual. The last set of results in Table 6

57𝐷𝑖𝑡(𝑃) = 1 workers from non-top firms are still more likely to be 𝐻-ability than those with no

publication. They may produce papers with a matched patent later on and benefit from the reduction

of asymmetric information, which would explain the small increase in the share employed by the

top at 𝑡 = 5 in this group.
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Table 6: Innovation Output under Asymmetric vs. Symmetric Learning

Paper Paper-Patent

Mean % Change Mean % Change

Asymmetric Benchmark
Overall 0.0923 0.0176

Top Firms 0.1120 0.0390

Nontop Firms 0.0429 0.0131

Symmetric
Overall 0.0931 0.97% 0.0179 1.39%

Top Firms 0.1181 5.50% 0.0412 5.50%

Nontop Firms 0.0419 -2.37% 0.0128 -2.12%

Symmetric, 𝜏| Asymmetric
Overall 0.0935 1.30% 0.0180 2.07%

Top Firms 0.1179 5.33% 0.0416 6.69%

Nontop Firms 0.0422 -1.55% 0.0130 -0.73%

shows that CS publications would increase by 1.3% rather than 0.97% if employers

were not to assign tasks differently in response to the reduction of asymmetric

information. Faster positive assortative matching therefore accounts for 134% of

the increase in publication rate when there is simultaneous disclosure of papers and

patents. Incumbent employers assign fewer innovation tasks just like they would

reduce training when they have less monopsony power, countering the efficiency

gains from sorting.

6 Conclusion

This paper provides empirical evidence of employer learning and quantifies

its role in improving the allocation of labor in the labor market for computer

scientists. By building a database that combines the employment histories of

newly minted Ph.D.’s in computer science with their publications and patents, I

offer more direct tests of public and private employer learning than what has been
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shown in the employer learning literature.

Publishing a CS conference proceeding increases the inter-firm mobility of

a worker at nontop firm by 30%, and almost doubles her chance of moving to

one of the top-6 tech firms in the following year. This pattern suggests a strong

role for public employer learning in the reallocation of workers between firms.

Higher-quality papers often coincide with a closely related patent application, but

the application remains private for 18 months. Using an event-study style analysis,

I show that authors of such papers experience a delayed increase in job mobility,

which provides evidence for asymmetric learning.

The mobility changes around the publications versus (matched) patent appli-

cations are consistent with predictions from the dynamic framework of employer

learning and sorting in this paper, in which I introduce information frictions about

talent into a model of imperfect labor market competition. I estimate a structural

version of the model and find that in the absence of employer learning from public

research records, the innovation output of early-career computer scientists would

drop by 16%. Disclosing patent applications one year faster would increase inno-

vation by 1%, driven by a faster rate of positive assortative matching.

A limitation about the data is that CS Ph.D.’s on LinkedIn are more likely

to work in industry than in academia. I show that workers who publish papers

in the industry are also more likely to move to academia, which suggests those

publications are also valued by academic employers. But more data needs to be

collected on academic computer scientists to investigate if encouraging tech firms

to participate in CS conferences reduces the AI brain drain from academia (e.g.,

Jurowetzki et al. 2021).

The dynamic framework of employer learning can also be adapted to quantify

the role of employer learning on reallocation of labor in other labor markets. This
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paper suggests that even for a high-skilled group with strong credentials like PhD

computer scientists, information frictions are prevalent and result in substantial

misallocation of workers between and within firms. It is likely that reducing

information frictions about workers would matter even more for the matching

between firms and workers in lower-skilled or less transparent labor markets.
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7 Appendix

A. Proofs and Model Extension

A0. Model Timeline

There are 𝑇 ≥ 3 discrete periods in this model. At least three periods are needed

to fully capture the information revelation process: innovation is produced at an initial

employer at 𝑡 = 1; the presence of a paper (𝐷𝑖𝑡(𝑃) + 𝐷𝑖𝑡(𝑃𝑄) ∈ {0, 1}) is known by the

beginning of 𝑡 = 2; whether a paper from 𝑡 = 1 has a matched patent application (𝐷𝑖𝑡(𝑃𝑄)
vs. 𝐷𝑖𝑡(𝑃)), and whether there is a patent unrelated to paper (𝐷𝑖𝑡(𝑄)), are not revealed

until 𝑡 = 3.

1. (𝒕 = 1) New PhD graduates enter the labor market.

(a) Given initial information {𝐼𝑖1} about workers, employers post wages

{𝑤𝑖 1 𝑗} simultaneously and choose the share of time each worker can

spend on innovation tasks, 𝜏𝑖 1 𝑗 ∈ [0, 1].
(b) Each worker observes the wages posted by all firms and chooses an initial

employer 𝑗(𝑖 , 1) that maximizes her utility (2.6) at 𝑡 = 1.

(c) Innovation outputs (Figure 2) are realized by the end of 𝑡 = 1 and are

fully known to 𝑖’s incumbent employer 𝑗(𝑖 , 1). There are 6 possible values

of the vector of indicators:

(𝐷𝑖𝑡(𝑃), 𝐷𝑖𝑡(𝑃𝑄), 𝐷𝑖𝑡(𝑄)) ∈ {(1, 0, 1), (1, 0, 0), (0, 1, 1), (0, 1, 0), (0, 0, 1), (0, 0, 0)}

2. (𝒕 = 2) Public information 𝐼𝑖2 and private information 𝐼̃𝑖2 at the beginning of

𝑡 = 2 evolve according to (2.3)

(a) Firms update their beliefs about a worker’s research ability, post new

{𝑤𝑖2𝑗} simultaneously, and choose task allocation {𝜏𝑖2𝑗}. A firm’s prob-

lem is summarized in (2.10) and (2.13).

(b) Workers re-enter the labor market with probability (2.5). If they are on

the market, they observe contracts posted by potential employers, draws

new idiosyncratic preferences that are independent from her preferences

at 𝑡 = 1, and solve (2.6) again. Otherwise, they stay at their original

employers, 𝑗(𝑖 , 2) = 𝑗(𝑖 , 1).
(c) Repeat 1(c).

3. (𝒕 = 3) Public information 𝐼𝑖3 and private information 𝐼̃𝑖3 at the beginning of

𝑡 = 3 evolve according to (2.3):

Public 𝐼𝑖3 = 𝐼𝑖2 ∪ 𝐼̃𝑖2 ∪ {𝐷𝑖2(𝑃) + 𝐷𝑖2(𝑃𝑄)}
Private 𝐼̃𝑖3 = {(𝐷𝑖2(𝑃), 𝐷𝑖2(𝑃𝑄), 𝐷𝑖2(𝑄))}

Repeat the rest of 2.
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4. (𝒕 > 3) Repeat 3 until period 𝑇 after which the model concludes.

A1. Backward Induction

Details on Workers’ Problem (Section 2.2.2)
Workers who are on the market can choose a new employer as discussed in Section 3.2.1

(see equation 2.6). The choice of an employer is summarized by a static nested logit model.

Given a choice set 𝐶, workers on the market draw idiosyncratic preferences {𝜖𝑖𝑡 𝑗} from a

GEV distribution (2.4).58

Given the wages posted by firms {𝑤 𝑗}, define the inclusive value of a nest 𝐺 of

employers as:

𝑊𝐺 B 𝑙𝑛
©­«
∑
𝑗∈𝐺

𝑒𝑥𝑝( 𝑏

𝜌𝐺
𝑙𝑛(𝑤 𝑗))ª®¬

Therefore, the choice probabilities given public belief 𝜋 = 𝑃𝑟(𝛼𝑖 = 𝐻 |𝐼𝑖𝑡) that enter the

labor supply can be written as:

𝑠 𝑗 | 𝐶 = 𝑠 𝑗 | 𝐺(𝑗)︸︷︷︸
choose 𝑗∈𝐺(𝑗)

× 𝑠𝐺(𝑗)| 𝐶︸ ︷︷ ︸
choose nest 𝐺(𝑗)∈𝐶

(7.1)

∀𝐺 : 𝑠𝐺 |𝐶 = 1[𝐺 ∈ 𝐶] × 𝑒𝑥𝑝(𝜂𝐺(𝜋) + 𝜌𝐺 ×𝑊𝐺)∑
𝐺′∈𝐶 𝑒𝑥𝑝(𝜂𝐺′(𝜋) + 𝜌𝐺′ ×𝑊𝐺′)

∀𝑗 ∈ 𝐺 : 𝑠 𝑗 |𝐺 =
𝑒𝑥𝑝( 𝑏

𝜌𝐺
𝑙𝑛(𝑤 𝑗))

𝑒𝑥𝑝(𝑊𝐺)

Backward Induction:

I solve for the subgame perfect MPBNE in Definition 1 via backward induction.

58 Workers who have entered the industry may not be as likely to receive academic offers as

workers who have been working in academia. We assume the choice set 𝐶 includes all nests at 𝑡 = 1

for new PhDs. At 𝑡 > 1, 𝐶 includes academic nests (tenure-track or postdocs) for industry employees

with probability Λ𝐽𝐴, and 𝐶 = {Nontop Firms, Top Firms} with probability (1−Λ𝐽𝐴). Similarly, for

workers in academia at 𝑡 > 1, industry employers are in the choice set 𝐶 with probability Λ𝐴𝐽 . We

take (Λ𝐴𝐽 ,Λ𝐽𝐴) as model parameters that are estimated in Section 5.
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Last Period 𝒕 = 𝑻

At the last period 𝑇, employer 𝑗’s value function is the sum of expected revenue

generated by period-𝑇 employees net wages:

𝑉𝑇 𝑗 =
∑

𝑖: 𝑗(𝑖 ,𝑇−1)=𝑗
𝑣
(1)
𝑇 𝑗
(𝐼𝑖𝑇 , 𝐼̃𝑖𝑇)︸                     ︷︷                     ︸

Incumbent

+
∑

𝑖: 𝑗(𝑖 ,𝑇−1)≠𝑗
𝑣
(0)
𝑇 𝑗
(𝐼𝑖𝑇)︸                ︷︷                ︸

Workers Outside

(7.2)

where 𝐼𝑖𝑇 represents the public information about worker 𝑖 at the beginning of 𝑇, while

𝐼̃𝑖𝑇 represents the private information known only if worker 𝑖 is an incumbent employee.

Employers derive optimal contracts for incumbent versus new workers separately, due to

differences in their labor supply and information about their ability.

Incumbent Employees

Given information (𝐼𝑖𝑇 , 𝐼̃𝑖𝑇) about an incumbent employee 𝑖, employer 𝑗 solves:

𝑣
(1)
𝑇 𝑗
(𝐼𝑖𝑇 , 𝐼̃𝑖𝑇) = 𝑚𝑎𝑥𝒘 ,𝝉 𝑠

(1)
𝑗
(𝒘 , 𝑤−𝑗 ; 𝐼𝑖𝑇)︸             ︷︷             ︸
labor supply

×
(
𝐸𝛼 |𝐼𝑖𝑡∪𝐼̃𝑖𝑡 [𝑌𝑗(𝛼, 𝝉)] −𝒘

)
︸                         ︷︷                         ︸

MRPL net wage

(7.3)

where 𝑠
(1)
𝑗
(𝒘 , 𝑤−𝑗 ; 𝐼𝑖𝑇) = 1 − 𝜆(𝐼𝑖𝑇)︸     ︷︷     ︸

off market

+𝜆(𝐼𝑖𝑇) × 𝐸𝐶[𝑠 𝑗 |𝐶(𝒘 , 𝑤−𝑗)]︸                          ︷︷                          ︸
on market & enter j again

where 𝑤−𝑗 are wages posted by other employers given public information 𝐼𝑖𝑇 , taken as

given by the 𝑗.59 Public information 𝐼𝑖𝑇 matters for the probability at which the worker

re-enters the labor market (2.5). This formulation is equivalent to defining a terminal value

function 𝑣(𝑇+1)𝑗 as follows, assuming that employers no longer update their beliefs based

on innovation output from 𝑡 = 𝑇 onward. Employers will continue to pay (𝑤, 𝜏) set in 𝑇

until a worker leaves the firm. Given the rate at which workers re-enter the labor market

per period (𝜆’s in 2.5), the expected tenure of worker 𝑖 in firm 𝑗 after 𝑇 is approximately

1

𝜆(𝐼𝑖𝑇 ) . Define

𝑣(𝑇+1)𝑗(𝑤, 𝜏) B
1/𝜆(𝐼𝑖𝑇 )∑
𝑘=0

𝛽𝑘
(
𝐸[𝑌𝑗(𝛼, 𝜏)] − 𝑤

)
(7.4)

𝑣
(1)
𝑇 𝑗
B 𝑚𝑎𝑥𝑤,𝜏 𝑠

(1)
𝑇 𝑗

×
(
𝐸[𝑌𝑗(𝛼, 𝜏)] − 𝑤 + 𝛽 × 𝑣(𝑇+1)𝑗(𝑤, 𝜏)

)
= 𝑠

(1)
𝑇 𝑗

×
(
𝐸[𝑌𝑗(𝛼, 𝜏)] − 𝑤

)
× 1 − 𝛽1/𝜆(𝐼𝑖𝑇 )

1 − 𝛽

The terminal value function defined above will yield the same optimal contract as the one

59Wages are posted simultaneously by employers. In equilibrium, 𝑤−𝑗 = 𝑤
(0)
−𝑗 (𝐼𝑖𝑇), the optimal

wages outside firms would post given public information 𝐼𝑖𝑇 .
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that maximizes (7.3), since
1−𝛽1/𝜆(𝐼𝑖𝑇 )

1−𝛽 is independent of the choice variables (𝑤, 𝜏).
Take derivatives of the objective function (7.3) over wage 𝒘:

𝜕𝑠(1)
𝑗
(𝒘 ,𝑤−𝑗 ; 𝐼𝑖𝑇)
𝜕𝑤

×
(
𝐸𝛼 |𝐼𝑖𝑇∪𝐼̃𝑖𝑇 [𝑌𝑗(𝛼, 𝝉)] − 𝑤

)
− 𝑠

(1)
𝑗
(𝒘 , 𝑤−𝑗 ; 𝐼𝑖𝑇) = 0 (7.5)

letting 𝐺 = 𝐺(𝑗),

𝜕𝑠(1)
𝑗
(𝒘 , 𝑤−𝑗 ; 𝐼𝑖𝑇)
𝜕𝑤

= 𝜆(𝐼𝑖𝑇) ×
©­­­­­«
𝜕𝑠 𝑗 |𝐺

𝜕𝑤︸︷︷︸
(𝑎)

×𝐸𝐶[𝑠𝐺 |𝐶] + 𝑠 𝑗 |𝐺 ×
𝜕𝐸𝐶[𝑠𝐺 |𝐶]

𝜕𝑤︸      ︷︷      ︸
(𝑏)

ª®®®®®¬
(𝑎) = 𝑏/𝜌𝐺

𝑤
× 𝑠 𝑗 |𝐺 × (1 − 𝑠 𝑗 |𝐺)

(𝑏) = 𝑏

𝑤
× 𝑠 𝑗 |𝐺 × 𝐸𝐶[𝑠𝐺 |𝐶 × (1 − 𝑠𝐺 |𝐶)]

Merging the equations above yields the labor supply elasticity w.r.t. wage for the incumbent

worker 𝑖:

𝜉(1)
𝑖𝑇 𝑗
B

𝜕𝑙𝑛(𝑠(1)
𝑗
(𝒘 , 𝑤−𝑗 ; 𝐼𝑖𝑇))
𝜕𝑙𝑛(𝑤) =

𝑏

𝜌𝐺
× 𝐸𝐶[

𝜆𝐺 × 𝑠 𝑗 |𝐺 × 𝑠𝐺 |𝐶

𝑠
(1)
𝑗︸              ︷︷              ︸
(𝑐)

×
(
1 − 𝜌𝐺 𝑠 𝑗 |𝐺 𝑠𝐺 |𝐶 − (1 − 𝜌𝐺)𝑠 𝑗 |𝐺

)︸                                   ︷︷                                   ︸
(𝑑)

]

(7.6)

where (c) represents the ratio of the probability of an incumbent worker getting on the

market and choosing 𝑗 again to the probability of staying at 𝑗. This ratio converges to 1

when 𝜆 → 1 (that is, incumbent employees search for new jobs with probability 1). On

the other hand, when 𝜆 is small, the labor supply of incumbent workers is highly inelastic.

Wages at 𝑇 would be 0 if 𝜆 = 0. If the choice set includes all employers and 𝜌𝐺 = 1, (d) can

be reduced to (1 − 𝑠 𝑗).
Plugging 𝜉(1)

𝑖𝑇 𝑗
into the first order condition (7.5), the optimal wage for an incumbent

worker is:

𝑤
(1)
𝑖𝑇 𝑗

= 𝒘(1)
𝑇 𝑗
(𝑤−𝑗 ; 𝐼𝑖𝑇 , 𝐼̃𝑖𝑇) =𝐸𝛼 |𝐼𝑖𝑇∪𝐼̃𝑖𝑇 [𝑌𝑗(𝛼, 𝝉(1)𝑖𝑇 𝑗

)] × 𝜉(1)
𝑖𝑇 𝑗

×
(
1 + 𝜉(1)

𝑖𝑇 𝑗

)−1︸                  ︷︷                  ︸
markdown

(7.7)

In equilibrium (Definition 1), ∀𝐼 : 𝑤−𝑗 = 𝑤
(0)
−𝑗 (𝐼), and we have 𝑤

(1)
𝑇 𝑗
(𝐼 , 𝐼̃) = 𝒘(1)

𝑇 𝑗
(𝑤−𝑗(𝐼); 𝐼 , 𝐼̃).
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Taking the derivative of (7.3) over allocation to publication-oriented tasks, 𝜏,

𝜕𝑠(1)
𝑗

𝜕𝜏︸︷︷︸
=0

+𝑠(1)
𝑗

×
𝜕𝐸𝛼 |𝐼𝑖𝑇∪𝐼̃𝑖𝑇 [𝑌𝑗(𝛼, 𝜏)]

𝜕𝜏
≥ 0 (7.8)

define 𝜏∗𝑇 𝑗(𝐼 , 𝐼̃) B
1

𝜁
𝐸𝛼 |𝐼∪𝐼̃

[
𝑝𝛼 𝑝̃𝛼𝜙 𝑗(𝑃𝑄) + 𝑝𝛼(1 − 𝑝̃𝛼)𝜙 𝑗(𝑃) − 1

]
−→ 𝝉(1)

𝑖𝑇 𝑗
= 𝑚𝑎𝑥{0, 𝑚𝑖𝑛{1, 𝜏∗𝑇 𝑗(𝐼𝑖𝑇 , 𝐼̃𝑖𝑇)}}

Outside Workers

For an outside worker 𝑖 from 𝑗(𝑖 , 𝑇−1) ≠ 𝑗, employer 𝑗 only has access to public infor-

mation 𝐼𝑖𝑇 . The value function is therefore expected over private information 𝐼̃ conditional

on 𝐼𝑖𝑇 . Specifically, employer 𝑗 solves:

𝑣
(0)
𝑇 𝑗
(𝐼𝑖𝑇) = 𝑚𝑎𝑥𝒘 ,𝝉𝐸𝐼̃ |𝐼𝑖𝑇 [ 𝑠

(0)
𝑗
(𝑤, 𝑤−𝑗 ; 𝐼𝑖𝑇 , 𝐼̃)︸               ︷︷               ︸
labor supply

×
(
𝐸𝛼 |𝐼𝑖𝑇∪𝐼̃[𝑌𝑗(𝛼, 𝝉)] −𝒘

)
︸                        ︷︷                        ︸

MRPL net wage

] (7.9)

where 𝑠
(0)
𝑗
(𝑤, 𝑤−𝑗 ; 𝐼𝑖𝑇 , 𝐼̃) = 𝜆(𝐼𝑖𝑇) × 𝐸𝐶

[
𝑠 𝑗 |𝐶(𝒘 , 𝑤(−𝑗); 𝐼𝑖𝑇 , 𝐼̃)

]
𝑤−𝑗 are wages posted by other employers. Since (−𝑗) includes the incumbent employer

𝑗(𝑖 , 𝑇 − 1) that has private information about this worker, 𝑤−𝑗 and therefore 𝑠
(0)
𝑗

in (7.9)

varies by private information 𝐼̃.

Taking the derivative of (7.9) over the wage 𝒘 posted by 𝑗:

𝐸
𝐼̃ |𝐼𝑖𝑇


𝜕𝑠(0)

𝑗

𝜕𝑤
×

(
𝐸𝛼 |𝐼𝑖𝑇∪𝐼̃[𝑌𝑗(𝛼, 𝜏(0)𝑗

)] − 𝑤
)
− 𝑠

(0)
𝑗
(𝒘 , 𝑤−𝑗 ; 𝐼𝑖𝑇 , 𝐼̃)

 = 0 (7.10)

Conditional on the not-yet-known 𝐼̃:

𝜕𝑠(0)
𝑗
(𝒘 , 𝑤−𝑗 ; 𝐼𝑖𝑇 , 𝐼̃)

𝜕𝑤
= 𝜆(𝐼𝑖𝑇) ×

©­­­­­«
𝜕𝑠 𝑗 |𝐺

𝜕𝑤︸︷︷︸
(𝑒)

×𝐸𝐶[𝑠𝐺 |𝐶] + 𝑠 𝑗 |𝐺 ×
𝜕𝐸𝐶[𝑠𝐺 |𝐶]

𝜕𝑤︸      ︷︷      ︸
( 𝑓 )

ª®®®®®¬
(𝑒) = 𝑏/𝜌𝐺

𝑤
× 𝑠 𝑗 |𝐺 × (1 − 𝑠 𝑗 |𝐺)

( 𝑓 ) = 𝑏

𝑤
× 𝑠 𝑗 |𝐺 × 𝐸𝐶[𝑠𝐺 |𝐶 × (1 − 𝑠𝐺 |𝐶)]
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Merging the equations above yields the labor supply elasticity w.r.t. wage for new workers:

𝜉(0)
𝑖𝑇 𝑗

(̃𝐼) B
𝜕𝑙𝑛(𝑠(0)

𝑗
(𝒘 , 𝑤−𝑗 ; 𝐼𝑖𝑇 , 𝐼̃))
𝜕𝑙𝑛(𝑤) =

𝑏

𝜌𝐺
× 𝐸𝐶

[
𝑠𝐺 |𝐶

𝐸𝐶[𝑠𝐺 |𝐶]
×

(
1 − 𝜌𝐺 𝑠 𝑗 |𝐺 𝑠𝐺 |𝐶 − (1 − 𝜌𝐺)𝑠 𝑗 |𝐺

) ]
(7.11)

where 𝐼̃ matters for the wages set by the incumbent employer of this outside worker and

thus each choice probability in (7.11). In contrast with the elasticity 𝜉(1)
𝑖𝑇 𝑗

of an incumbent

worker (7.6),𝜆(𝐼𝑖𝑇), the probability getting on the market, no longer matters for the elasticity

to a new employer 𝑗.60 In addition, 𝑗 is uncertain about 𝐼̃ and the elasticity is specific to

𝐼̃ conditional on public information 𝐼𝑖𝑇 . Plugging the above into FOC (7.10), the optimal

wage for outside employee 𝑖 can be written as:61

𝑤
(0)
𝑖𝑇 𝑗

=
©­«1 + 𝐸

𝐼̃ |𝐼𝑖𝑇


𝑠
(0)
𝑗

𝐸
𝐼̃ |𝐼𝑖𝑇 [𝑠

(0)
𝑗
]
× 𝜉(0)

𝑖𝑇 𝑗
(̃𝐼)

ª®¬
−1

(7.12)

× 𝐸
𝐼̃ |𝐼𝑖𝑇


𝑠
(0)
𝑗

𝐸
𝐼̃ |𝐼𝑖𝑇 [𝑠

(0)
𝑗
]
× 𝜉(0)

𝑖𝑇 𝑗
(̃𝐼) × 𝐸𝛼 |𝐼𝑖𝑇∪𝐼̃[𝑌𝑗(𝛼, 𝜏)]


Taking the derivative of (7.9) over task allocation 𝜏,

𝜕𝐸
𝐼̃ |𝐼𝑖𝑇 [𝑠

(0)
𝑗

× 𝐸𝛼 |𝐼𝑖𝑇∪𝐼̃[𝑌𝑗(𝛼, 𝜏)]]
𝜕𝜏

≥ 0 (7.13)

→𝐸
𝐼̃ |𝐼𝑖𝑇 [𝑠

(0)
𝑗

× (−1 + 𝐸𝛼 |𝐼∪𝐼̃[𝜙 𝑗(𝑃𝑄)𝑝𝛼 𝑝̃𝛼 + 𝜙 𝑗(𝑃)𝑝𝛼(1 − 𝑝̃𝛼)] − 𝜁𝜏)] ≥ 0

→𝝉(0)
𝑖𝑇 𝑗

= 𝐸
𝐼̃ |𝐼𝑖𝑇


𝑠
(0)
𝑗

𝐸
𝐼̃ |𝐼𝑖𝑇 [𝑠

(0)
𝑗
]
× 𝜏∗𝑇 𝑗(𝐼𝑖𝑇 , 𝐼̃)


that is, the task allocation for an outside worker is a weighted average of what firm 𝑗 would

have set if 𝐼̃ is known. The weight on 𝐼̃ equals the likelihood of 𝐼̃ conditional on public 𝐼𝑖𝑇
and the case that the worker moves to 𝑗.

60New workers are predicted to be paid a higher wage than equally productive incumbent work-

ers, due to their more elastic labor supply when 𝜆 < 1. In this paper I do not have data on wages

and thus do not test this prediction.

61At information state (𝐼 , 𝐼̃), 𝑠(0)
𝑗

= 𝑠
(0)
𝑗
(𝑤(0)

𝑖𝑇 𝑗
, 𝑤−𝑗 ; 𝐼 , 𝐼̃), which equals to 𝑠

(0)
𝑗
(𝐼 , 𝐼̃) in equilibrium,

evaluated at 𝑤
(0)
𝑖𝑇 𝑗

= 𝑤
(0)
𝑇 𝑗
(𝐼) and 𝑤−𝑗(𝐼 , 𝐼̃) (see Definition 1)

55



Middle Periods 𝒕 = 2, ..., (𝑻 − 1)

𝑉𝑡 𝑗

( ⋃
worker 𝑖

𝐼𝑖𝑡 𝑗

)
=

∑
𝑖: 𝑗(𝑖 ,𝑡−1)=𝑗

𝑣
(1)
𝑡 𝑗
(𝐼𝑖𝑡 ∪ 𝐼̃𝑖𝑡)︸                     ︷︷                     ︸

Incumbent

+
∑

𝑖: 𝑗(𝑖 ,𝑡−1)≠𝑗
𝑣
(0)
𝑡 𝑗
(𝐼𝑖𝑡)︸               ︷︷               ︸

Workers Outside

(7.14)

Employer 𝑗 solves the following for incumbent workers:

𝑣
(1)
𝑡 𝑗
(𝐼𝑖𝑡 , 𝐼̃𝑖𝑡) = 𝑚𝑎𝑥𝒘 ,𝝉 𝑠

(1)
𝑗
(𝒘 , 𝑤−𝑗 ; 𝐼𝑖𝑡)︸             ︷︷             ︸

expected labor supply

×
(
𝐸𝛼 |𝐼𝑖𝑡∪𝐼̃𝑖𝑡 [𝑌𝑗(𝛼, 𝝉)] + 𝛽 𝐸𝑫[𝑣(1)(𝑡+1)𝑗(𝐼

′, 𝐼̃′) | 𝝉] −𝒘
)

︸                                                          ︷︷                                                          ︸
MRPL at t & discounted continuation value, net wage

(7.15)

Employers now take into the expected continuation value from stayers at (𝑡 + 1):

𝐸𝑫[𝑣(1)(𝑡+1)𝑗(𝐼
′, 𝐼̃′) | 𝝉] =

∑
𝑫

𝑃𝑟(𝑫 |𝐼𝑖𝑡 ∪ 𝐼̃𝑖𝑡 , 𝜏) × 𝑣
(1)
(𝑡+1)𝑗(𝐼

′(𝑫), 𝐼̃′(𝑫)) (7.16)

in which 𝑫 = (𝐷𝑖𝑡(𝑃), 𝐷𝑖𝑡(𝑃𝑄), 𝐷𝑖𝑡(𝑄))
𝑃𝑟(𝑫 |𝐼𝑖𝑡 ∪ 𝐼̃𝑖𝑡 , 𝜏) =

∑
𝛼

𝑃𝑟(𝛼 |𝐼𝑖𝑡 ∪ 𝐼̃𝑖𝑡) × 𝑃𝑟(𝑫 |𝛼, 𝜏) as in Table 1

𝐼′(𝑫) =𝐼𝑖𝑡 ∪ 𝐼̃𝑖𝑡 ∪ {𝐷𝑖𝑡(𝑃𝑄) + 𝐷𝑖𝑡(𝑃)}
𝐼̃′(𝑫) ={𝑫}

The optimal wages at 𝑡 < 𝑇, as shown in (2.11) and repeated below, can be derived

the same way as wages at 𝑡 = 𝑇:

𝒘(1)
𝑖𝑡 𝑗

=

(
𝐸𝛼 |𝐼𝑖𝑡∪𝐼̃𝑖𝑡 [𝑌𝑗(𝛼, 𝜏)] + 𝛽 𝐸[𝑣(1)(𝑡+1)𝑗(𝐼

′, 𝐼̃′) | 𝝉(1)
𝑖𝑡 𝑗
]
)
× 𝜉(1)

𝑖𝑡 𝑗
×

(
1 + 𝜉(1)

𝑖𝑡 𝑗

)−1︸                 ︷︷                 ︸
markdown

(7.17)

The firm-specific labor supply elasticity of an incumbent worker or a new worker can

be written the same as equations (7.6) (7.11), respectively. The difference in wages at 𝑡 < 𝑇

from wages at 𝑡 = 𝑇 is that employers also share some of the expected continuation value

with the worker (marked down by the inverse of labor supply elasticity). In other words,

the dynamic monopsonistic wages in this framework are front-loaded. Once a worker has

entered the firm, wages for incumbent employees are lower unless they keep re-entering

the labor market (𝜆 → 1). The gap between an incumbent and equally productive new

worker may be interpreted as a signing bonus or stock options contracted upon entry.

Optimal task allocations now depend on the changes to continuation value given
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innovation outputs:

𝝉(1)
𝑖𝑡 𝑗

=𝑚𝑎𝑥{0, 𝑚𝑖𝑛{1, 𝝉∗𝑡 𝑗(𝐼𝑖𝑡 , 𝐼̃𝑖𝑡)}} (7.18)

𝝉∗𝑡 𝑗(𝐼 , 𝐼̃) B
1

𝜁
× 𝐸𝛼 |𝐼∪𝐼̃

−1 +
∑

𝑘∈{𝑃, 𝑃𝑄, 𝑄}
𝜙 𝑗(𝑘) ×

𝜕𝐸[𝐷𝑖𝑡(𝑘)|𝛼, 𝜏]
𝜕𝜏

︸                                                          ︷︷                                                          ︸
return to innovation today

+
𝛽/𝜙̄ 𝑗

𝜁
×

𝜕𝐸[𝑣(1)(𝑡+1)𝑗(𝐼
′, 𝐼̃′)|𝜏]

𝜕𝜏︸                  ︷︷                  ︸
change in value from stayer

(7.19)

in which the dynamic return to assigning more publication-oriented tasks today:

𝜕𝐸[𝑣(1)(𝑡+1)𝑗(𝐼
′, 𝐼̃′)|𝜏]

𝜕𝜏
(7.20)

=
∑
𝑫

𝜕𝑃𝑟(𝑫 |𝐼𝑖𝑡 ∪ 𝐼̃𝑖𝑡 , 𝜏)
𝜕𝜏

× 𝑣
(1)
(𝑡+1)𝑗(𝐼

′(𝑫), 𝐼̃′(𝑫))

=
∑
𝛼

𝑃𝑟(𝛼 |𝐼𝑖𝑡 ∪ 𝐼̃𝑖𝑡) ×
∑

𝑘∈{𝑃, 𝑃𝑄}

𝜕𝑃𝑟(𝐷𝑖𝑡(𝑘) = 1|𝛼, 𝜏)
𝜕𝜏︸                     ︷︷                     ︸

see Table 1

×
(
𝐸[𝑣(1)(𝑡+1)𝑗 |𝛼, Paper] − 𝐸[𝑣(1)(𝑡+1)𝑗 |𝛼,No Paper]

)
︸                                                      ︷︷                                                      ︸

(∗)

where (∗) is the change in the firm’s continuation value when employee 𝑖 produces a paper

(𝐷𝑖𝑡(𝑃𝑄) + 𝐷𝑖𝑡(𝑃) = 1) versus not, expected over other patenting activity, 𝐷𝑖𝑡(𝑄), which

does not vary by 𝜏 (Table 1).

The optimal contracts for a new worker maximize (2.13). The derivation is similar to

that of 𝑡 = 𝑇, and the solutions are presented in Section 2.2.3.

In summary, we have derived the optimal wages as expressed in (2.11,2.14), and the

optimal task allocations in (2.12,2.15). In equilibrium, employers set wages and allocate

workers to publication-oriented tasks, conditional on information about workers and taking

as given the contracts set by other employers. The expected labor supply from incumbent

employees and from new workers are determined by the wages set by potential employers.

First Period 𝒕 = 1

New PhD’s are on the market at 𝑡 = 1 and observe the contracts posted by all employ-

ers. Firms simultaneously solve the following conditional on common initial information
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𝐼𝑖1:

𝑉1𝑗

(⋃
𝐼𝑖1

)
=

∑
𝑖

𝑣1𝑗(𝐼𝑖1) (7.21)

𝑣1𝑗(𝐼𝑖1) = 𝑚𝑎𝑥𝒘 ,𝝉 𝑠 𝑗(𝒘 , 𝑤−𝑗 ; 𝐼𝑖1)︸           ︷︷           ︸
labor supply

×
©­­­­«
𝐸𝛼 |𝐼𝑖1[𝑌𝑗(𝛼, 𝝉)]︸           ︷︷           ︸

MRPL at 𝑡=1

+ 𝛽 × 𝐸[𝑣(1)
2𝑗
(𝐼′, 𝐼̃′)|𝝉]︸                  ︷︷                  ︸

continuation value

−𝒘
ª®®®®¬

The FOC for initial wage:

𝜕𝑠 𝑗(𝒘 , 𝑤−𝑗 ; 𝐼𝑖1)
𝜕𝑤

×
(
𝐸𝛼 |𝐼𝑖1[𝑌𝑗(𝛼, 𝝉)] − 𝑤

)
− 𝑠 𝑗(𝒘 , 𝑤−𝑗 ; 𝐼𝑖1) = 0

where 𝑠 𝑗(𝒘 , 𝑤−𝑗 ; 𝐼𝑖1) = 𝑠 𝑗 |𝐺 × 𝑠𝐺

The elasticity of labor supply to firm 𝑗 ∈ 𝐺 at 𝑡 = 1 equals:

𝜉𝑖1𝑗 =
𝑏

𝜌𝐺
×

(
1 − (1 − 𝜌𝐺)𝑠 𝑗 |𝐺 − 𝜌𝐺𝑠 𝑗

)
(7.22)

The optimal contract can then be written as:

𝑤𝑖1𝑗 =

(
𝐸𝛼 |𝐼𝑖1[𝑌𝑗(𝛼, 𝝉)] + 𝛽 𝐸[𝑣(1)

2𝑗
(𝐼′, 𝐼̃′)|𝜏𝑖1𝑗]

)
× 𝜉𝑖1𝑗 ×

(
1 + 𝜉𝑖1𝑗

)−1

(7.23)

𝜏𝑖1𝑗 = 𝑚𝑎𝑥{0, 𝑚𝑖𝑛{1, 1

𝜁
𝐸𝛼 |𝐼𝑖1[𝑝𝛼 𝑝̃𝛼𝜙 𝑗(𝑃𝑄) + 𝑝𝛼(1 − 𝑝̃𝛼)𝜙 𝑗(𝑃) − 1 +

𝛽

𝜙̄ 𝑗

×
𝜕𝐸[𝑣(1)

2𝑗
(𝐼)|𝜏]

𝜕𝜏
]}}

where wage markdown equals the inverse of labor supply elasticity in (7.22), and the con-

tinuation value changes in 𝜏 as in (7.20).

The backward induction from 𝑡 = 𝑇 to 𝑡 = 1 is complete.

A2. Model Equilibrium

Proposition 1 - MPBNE under Imperfect Labor Market Competition

Proposition 1 (Existence and Uniqueness of MPBNE) There exists a strategy profile {(𝑤𝑡 𝑗 , 𝜏𝑡 𝑗)}
that satisfies Definition 1. The equilibrium wages are unique up to a positive scaling factor, and they
result in a unique allocation of workers between firms at each possible information state:

𝑠𝑡 𝑗(𝐼 , 𝐼̃) =


𝑠1𝑗(𝑤1(𝐼)) 𝑡 = 1

𝑠
(1)
𝑡 𝑗

(
𝑤𝑡 𝑗(𝐼 , 𝐼̃), 𝑤𝑡(−𝑗)(𝐼)

)
𝑡 > 1, 𝑗 = 𝑗(𝑖 , 𝑡 − 1)

𝑠
(1)
𝑡 𝑗

(
𝑤𝑡 𝑗(𝐼), 𝑤𝑡(−𝑗)(𝐼 , , 𝐼̃)

)
𝑡 > 1, 𝑗 ≠ 𝑗(𝑖 , 𝑡 − 1)

which satisfies (2.16).
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Proof:
Existence: I solve the game between firms by backward induction in Appendix A1, starting

from period T. In the last period, the wages are marked down from the expected flow profit

by the inverse of labor supply elasticity. I show in 2.9 that the firm-specific elasticity is a

continuous function of the probabilities of workers choosing each firm, which in turn are

continuous functions of wages. Since 𝑠𝑇 ◦ 𝑤𝑇 : [0, 1] → [0, 1] is a continuous function, by

Brouwer fixed-point theorem, there exists a fixed point 𝑠∗
𝑇

such that 𝑠∗
𝑇
= 𝑠𝑇(𝑤𝑇(𝑠∗𝑇)).

At 𝑡 = 1, 2..., 𝑇 − 1, firms post contracts with knowledge of the equilibrium that will

be played from (𝑡 + 1) onwards. Since workers are impatient and solve a repeated static

problem (2.6), only wages matter for the allocation of workers between firms, denoted by

𝑠∗𝑡 , for all possible information states at t. By the same argument at T, 𝑠∗𝑡 is a fixed point to

the function 𝑠𝑡 ◦ 𝑤𝑡 .

Stacking them together, 𝑠∗ = (𝑠∗
1
, 𝑠∗

2
, ..., 𝑠∗

𝑇
) is a fixed point of 𝑠 ◦ 𝑤, which establishes

the existence of the MPBNE.

Uniqueness: Since workers do not value task allocation 𝜏’s when choosing an employer,

the task allocation strategies denoted by 𝜏𝑡 𝑗 are solved to maximize the firm’s own expected

profit plus discounted continuation value, independently from the decisions by other firms.

Every public information state 𝐼 is on the equilibrium path due to the fact that workers

hold idiosyncratic preference over employers. That is a positive probability that a worker of

any public belief 𝜋 is employed by a firm j in each period. The simplifying assumptions on

the workers’ problem help avoid multiple equilibria in this game. The equilibrium wages

are unique up to scaling by a positive constant, and the equilibrium allocation of workers

between firms 𝑠∗ is unique. □

Proposition 2 - Equilibrium under Perfect Labor Market Competition

Suppose that the labor supply is perfectly elastic in each period (
𝑏
𝜌 → ∞ and 𝜆 ≡ 1),

and that the information is incomplete but symmetric among employers. Under such

assumptions, the decision to allocate workers to publication-oriented tasks is equivalent to

the decision to provide general skill training that is transferable between firms. We get the

familiar result in Becker (1964) that workers who are not credit-constrained bear all costs

of training and are paid their full marginal product of labor.

Proposition 2 (Equilibrium under Public Information & Perfect Competition) If the labor
market is perfectly competitive and information is always symmetric, each firm 𝑗 offers a worker with
public information 𝐼 at the beginning of any period 𝑡:

𝒘𝑡 𝑗(𝐼) = 𝐸𝛼 |𝐼[𝑌𝑗(𝛼, 𝜏𝑡 𝑗(𝐼))] (7.24)

in which 𝜏𝑡 𝑗(𝐼) = 𝑎𝑟𝑔𝑚𝑎𝑥𝜏∈[0,1] 𝐸𝛼 |𝐼[𝑌𝑗(𝛼, 𝜏)]

Proof of Proposition 2:

The labor supply w.r.t. wage is perfectly elastic under the assumptions that
𝑏
𝜌𝐺

→ ∞
and 𝜆 ≡ 1. Plugging 𝜉(1) → ∞ (2.9 into the incumbent wage at 𝑡 = 𝑇, I have 𝑤

(1)
𝑇 𝑗
(𝐼) =
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𝐸𝛼 |𝐼[𝑌𝑗(𝛼, 𝜏(1)𝑇 𝑗
(𝐼))]. Incumbent workers are paid the full expected value conditional on

public information 𝐼. There is no dynamic rent for employers at (𝑇 − 1). The wage in

intermediary periods, as shown in (2.11), also equals to the expected value from a worker

without leaving any dynamic rent to an employer.

Information is assumed to be symmetric between employers. The wages for outside

workers also equal to 𝐸𝛼 |𝐼[𝑌𝑗(𝛼, 𝜏(1)𝑇 𝑗
(𝐼))]. Since the continuation value equals zero at all

employers, allocating workers to publication-oriented tasks also becomes a static decision:

𝜏𝑡 𝑗(𝐼) = 𝑚𝑎𝑥{0, 𝑚𝑖𝑛{1, 1

𝜁
𝐸𝐼[−1 +

∑
𝑘

𝜙 𝑗(𝑘) ×
𝜕𝐸[𝐷𝑖𝑡(𝑘)|𝛼, 𝜏]

𝜕𝜏
]}}

The costs of publication-oriented tasks are fully deducted from workers’ wages (see 2.1).

That is, workers are bearing all costs of innovation. They are not credit constrained as they

earn a positive wage from routine tasks. The choices of publication-oriented tasks would

be first best in each period, just like the choice of general skill training made by workers

who are not credit constrained in Becker (1964). □
If the labor market is perfectly competitive but information is asymmetric as in (2.3),

less informed employers face a problem similar to Hendricks and Porter (1988) and would

adopt a mixed strategy to randomize their wage bids (Boozer 1994; Li 2013). Otherwise,

there is always adverse selection (Greenwald (1986)). It is unclear, however, if incumbent

employers would allocate workers to publication-oriented tasks efficiently.

A3. Model Predictions

Derivation of Prediction 1: Mobility in Response to Publications

Conditional on (prior) public information 𝐼, let 𝜋1 denote the posterior belief that a

worker is high-ability when she publishes a paper, and 𝜋0 denote the posterior belief when

she does not:

𝜋1 = 𝑃𝑟(𝛼 = 𝐻 |𝐼 , 𝐷(𝑃) + 𝐷(𝑃𝑄) = 1) = 𝑝𝐻 × 𝑃𝑟(𝐻 |𝐼)
𝑝𝐻 × 𝑃𝑟(𝐻 |𝐼) + 𝑝𝐿 × 𝑃𝑟(𝐿|𝐼)

𝜋0 = 𝑃𝑟(𝛼 = 𝐻 |𝐼 , 𝐷(𝑃) + 𝐷(𝑃𝑄) = 0) = (1 − 𝑝𝐻 × 𝜏) × 𝑃𝑟(𝐻 |𝐼)
(1 − 𝑝𝐻 × 𝜏) × 𝑃𝑟(𝐻 |𝐼) + (1 − 𝑝𝐿 × 𝜏) × 𝑃𝑟(𝐿|𝐼)

where task allocation 𝜏 in equilibrium is set optimally by her employer given the informa-

tion it has. Under the assumption that high-ability workers are more likely to publish, i.e.

𝑝𝐻 > 𝑝𝐿 ,we have ∀𝜏 ∈ (0, 1] : 𝜋1 > 𝜋0.

a) The probability that the workers stays at her employer 𝑗 varies by the posterior public

belief about her ability:

𝑠
(1)
𝑗
(𝜋1) = 1 − 𝜆(𝜋1) × (1 − 𝐸𝐶[𝑠 𝑗 |𝐶(𝜋1)])

𝑠
(1)
𝑗
(𝜋0) = 1 − 𝜆(𝜋0) × (1 − 𝐸𝐶[𝑠 𝑗 |𝐶(𝜋0)])
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The difference between which represents the gap in turnover when a worker pub-

lishes a paper:

𝑠
(1)
𝑗
(𝜋1) − 𝑠

(1)
𝑗
(𝜋0) = (𝜆(𝜋0) − 𝜆(𝜋1)) ×︸                ︷︷                ︸

≤0 at nontop firms

(
1 − 𝐸𝐶[𝑠 𝑗 |𝐶(𝜋0)]

)
+ 𝜆(𝜋1) ×

(
𝐸𝐶[𝑠 𝑗 |𝐶(𝜋1)] − 𝐸𝐶[𝑠 𝑗 |𝐶(𝜋0)]

)︸                                ︷︷                                ︸
diff in choosing j again if on market

Under A2, workers with more positive public belief from non-top firms are at least as

likely to be on the market as workers with lower employer belief: 𝜋1 > 𝜋0 → 𝜆(𝜋1) ≥
𝜆(𝜋0). The sign of the second term is determined by if a 𝜋1-worker is more likely to

choose the same firm again if she is on the job market.

Under the nested-logit structure, the choice probability for the worker with public

belief 𝜋 is:

𝐸𝐶[𝑠 𝑗 |𝐶(𝜋)] = 𝑠 𝑗 |𝐺(𝑗)(𝜋) × 𝐸𝐶[𝑠𝐺(𝑗)|𝐶(𝜋)]

=
𝑒𝑥𝑝( 𝑏

𝜌𝐺
𝑙𝑛(𝑤 𝑗(𝜋))

𝑒𝑥𝑝(𝑊𝐺(𝜋))
× 𝐸𝐶[

𝑒𝑥𝑝(𝜂𝐺(𝑗)(𝜋) +𝑊𝐺(𝑗)(𝜋))∑
𝐺∈𝐶 𝜂𝐺(𝜋) +𝑊𝐺(𝜋)

]

Equilibrium wages at all firms are non-decreasing in𝜋, which suggests∀𝐺 :
𝜕
𝜕𝜋𝑊𝐺(𝜋) ≥

0 for option value within nest 𝐺 (??). We have 𝐸𝐶[𝑠 𝑗 |𝐶(𝜋1)] < 𝐸𝐶[𝑠 𝑗 |𝐶(𝜋0)] unless the

wage increase at firm 𝑗 is disproportionately higher than the increase in option value

at 𝐺(𝑗) and at other nests of employers. This exception would not happen at a

lower-productivity firm that is less sensitive to worker research ability than more

productive counterparts.

𝜆(𝜋0) ≤ 𝜆(𝜋1) & 𝐸𝐶[𝑠 𝑗 |𝐶(𝜋0)] < 𝐸𝐶[𝑠 𝑗 |𝐶(𝜋1)] → 𝑠
(1)
𝑗
(𝜋1) < 𝑠

(1)
𝑗
(𝜋0)

That is, conditional on prior, workers who publishes a paper are more likely to leave

a nontop/less productive firm than coworkers without a publication.

b) Conditional on re-entering the job market, 𝜋1-workers are more likely to choose firms

that have higher returns to publications. Firms with higher 𝜙 𝑗(𝑃) or 𝜙 𝑗(𝑃𝑄) assign

more publication-oriented tasks:

𝜕2𝜏𝑗

𝜕𝜙 𝑗(𝑃·)𝜕𝜋
≥ 0

which implies the production of research publications is supermodular in equilib-

rium. Since wages are increasing in the expected returns to innovation, we also

have

𝜕2𝑤 𝑗

𝜕𝜙 𝑗(𝑃·) 𝜕𝜋
≥ 0
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The disproportionately higher wage increase at a more productive firm (higher 𝜙 𝑗(𝑃)
or 𝜙 𝑗(𝑃𝑄)) will attract workers with higher market belief:

𝑙𝑛

(
𝑠 𝑗 |𝐺(𝑗)(𝜋1)
𝑠 𝑗 |𝐺(𝑗)(𝜋0)

)
=

𝑏

𝜌𝐺(𝑗)
× 𝑙𝑛

(
𝑤 𝑗(𝜋1)
𝑤 𝑗(𝜋0)

)
−

(
𝑊𝐺(𝑗)(𝜋1) −𝑊𝐺(𝑗)(𝜋0)

)
> 0 at firms with high returns to publications

The positive assortative matching matters for marginal workers who would not have

spent as much time on innovation task without the positive signal. If 𝜋1 ,𝜋0 are

significantly high, the worker may spend 100% of time on research at any firm, in

which case there is no sorting as in a standard AKM framework.62

Derivation of Prediction 2: Job Mobility under Asymmetric Information𝑫𝒊𝒕(𝑷𝑸)

vs. 𝑫𝒊𝒕(𝑷)

Consider two workers 𝐴, 𝐵 from firm 𝑗 with the same public information 𝐼 at the

beginning of period 𝑡. The incumbent employer observes that the publication by worker 𝐴

is accompanied by a patent, but the publication by 𝐵 is not: 𝐷𝐴(𝑡−1)(𝑃𝑄) = 1 > 𝐷𝐵(𝑡−1)(𝑃𝑄),
while outside employers only observe that both workers produce a publication at (𝑡 − 1).
Let 𝜋 = 𝑃𝑟(𝛼 = 𝐻 |𝐼) denote the public belief about 𝐴 and 𝐵. The private belief held by

employer 𝑗 about worker 𝐴, 𝜋𝐴 = 𝑃𝑟(𝛼 = 𝐻 |𝐼 , 𝐷𝐴(𝑡−1)(𝑃𝑄) = 1) = 𝜋×𝑝∗
𝐻

𝜋×𝑝∗
𝐻
+(1−𝜋)𝑝∗

𝐿

, is higher

than the private belief about 𝐵 under the assumption that 𝑝∗
𝐻
> 𝑝∗

𝐿
.

a) Based on the labor supply in equation (2.8), the difference between 𝐴 and 𝐵 in the

probability of staying at their employer 𝑗 at 𝑡 is:

𝑠
(1)
𝑡 𝑗
(𝐼 , 𝐼̃𝐴) − 𝑠

(1)
𝑡 𝑗
(𝐼 , 𝐼̃𝐵) = 𝜆(𝐼)︸︷︷︸

>0

×
(
𝐸𝐶[𝑠 𝑗 |𝐶(𝜋𝐴)] − 𝐸𝐶[𝑠 𝑗 |𝐶(𝜋𝐵)]

)︸                                 ︷︷                                 ︸
(∗)

(7.25)

𝜋𝐴 > 𝜋𝐵 → (∗) > 0

Given the same public information, the two workers are equally likely to be on the

job market. Equilibrium wages from outside employers would be equal for 𝐴 and

𝐵. However, employer 𝑗 with private information would set a higher wage for the 𝐴,

resulting in higher retention of 𝐴: 𝑠
(1)
𝑡 𝑗
(𝐼 , 𝐼̃𝐴) > 𝑠

(1)
𝑡 𝑗
(𝐼 , 𝐼̃𝐵).

62If the wages are set in a AKM fashion as follows, there is no sorting between high 𝜋 and more

productive firms

∀𝜋 : 𝑙𝑛(𝑤 𝑗(𝜋)) = 𝛼(𝜋) + 𝜙 𝑗

𝑙𝑛

(
𝑠 𝑗(𝜋1)
𝑠 𝑗(𝜋0)

)
=

𝑏

𝜌𝐺(𝑗)
(𝛼(𝜋1) − 𝛼(𝜋0)) −

𝑏

𝜌𝐺(𝑗)
(𝛼(𝜋1) − 𝛼(𝜋0)) = 0
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b) Under the information structure, private information 𝐼̃𝐴 , 𝐼̃𝐵 based on their outputs

during (𝑡 − 1) are revealed by the beginning of (𝑡 + 1). As the market receives more

positive signals about worker 𝐴 than 𝐵, we have the new market belief 𝜋𝐴 > 𝜋𝐵 .

Prediction 1 re-applies. Workers with a newly revealed patent matched to their paper

at less productive firms experience an increase in inter-firm and upward mobility

relative to coworkers with only a paper.

Derivation of Prediction 3: Job Mobility under Asymmetric Information 𝑫𝒊𝒕(𝑸)

Prediction 3 can be thought of as a corollary of Prediction 2. Patents that are unrelated

to papers, denoted by𝑄, is also revealed with a one-period delay. Since high-ability workers

are also more likely to patent 𝑞𝐻 > 𝑞𝐿 ,the indicator for any 𝑄 is a positive signal about

worker ability that is held private by the employer. As a result, workers with 𝐷𝑖𝑡(𝑄) are

also more likely to stay at the original employer when 𝑄 is private, and become more

likely to move away from a less productive firm and move up the job ladder 𝑄 is public

information.

A4. Model Extension - Forward-looking Workers

The benchmark model shuts down the dynamic incentives of workers by assuming

that workers choose employers based on wages and idiosyncratic preferences in a given

period (2.6). Here I present an extension with forward-looking workers, who consider the

option value of re-entering the job market when they choose an employer. Working for

a firm that assigns more publication-oriented tasks would be more appealing to a high-

ability individual, who can improve the future market belief about her by publishing a

paper today.

As before, workers who are on the market hold GEV-distributed preferences over

firms (2.4). Those who are not on the market stay with their original employers and hold

the preference fixed too. The option value of a worker at information state (𝐼 , 𝐼̃) at the

beginning of conditional on starting at firm 𝑗 with preference 𝜖𝑡 𝑗 is:

Ω(𝑡+1)𝑗(𝐼 , 𝐼̃; 𝜖𝑡 𝑗) =(1 − 𝜆(𝐼)) ×
(
𝑏 𝑙𝑛(𝑤(1)

(𝑡+1)𝑗(𝐼 , 𝐼̃)) + 𝜌𝐺(𝑗)𝜖𝑡 𝑗
)

︸                               ︷︷                               ︸
value if staying at j, holding fixed 𝜖𝑡 𝑗

+ 𝜆(𝐼) × 𝐸𝐶

[
𝑙𝑛

(∑
𝐺∈𝐶

𝑒𝑥𝑝(𝜂𝐺(𝐼) +𝑊𝐺(𝐼 , 𝐼̃))
)]

︸                                         ︷︷                                         ︸
option value if re-entering the job market

Let 𝛽𝑊 denote the discount factor of workers. Workers who are on the market observe

posted contracts (𝑤 𝑗 , 𝜏𝑗) and choose an employer as follows:

𝑗(𝑖 , 𝑡) = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑗 𝑏 × 𝑙𝑛(𝑤 𝑗) + 𝛽𝑊 × 𝐸𝑫[Ω(𝑡+1)𝑗(𝐼 , 𝐼̃)|𝜏𝑗 , 𝐼𝑖𝑡 ∪ 𝐼̃𝑖𝑡]︸                             ︷︷                             ︸
expected option value

+𝜌𝐺𝜖𝑖𝑡 𝑗 (7.26)
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The option value can be transformed into a preference for publication-oriented tasks

𝜏:

𝐸𝑫[Ω(𝐼 , 𝐼̃)|𝜏𝑗 , 𝐼𝑖𝑡 ∪ 𝐼̃𝑖𝑡] =
∑
𝑫

𝑃𝑟(𝑫 |𝜏𝑗 , 𝐼𝑖𝑡 ∪ 𝐼̃𝑖𝑡) ×Ω(𝑡+1)𝑗(𝐼(𝑫), 𝐼̃(𝑫)) (7.27)

in which the likelihood of producing 𝑫 = (𝐷𝑖𝑡(𝑃), 𝐷𝑖𝑡(𝑃𝑄), 𝐷𝑖𝑡(𝑄)) by the law of iterated

expectations is: 𝑃𝑟(𝑫 |𝜏𝑗 , 𝐼𝑖𝑡 ∪ 𝐼̃𝑖𝑡) =
∑

𝛼 𝑃𝑟(𝛼 |𝐼𝑖𝑡 ∪ 𝐼̃𝑖𝑡) × 𝑃𝑟(𝑫 |𝜏𝑗 , 𝛼).63
Given the same likelihood of innovation 𝑃𝑟(𝑫 |𝜏𝑗 , 𝛼) as shown in Table 1, the expected

option value can be interpreted as the worker’s utility from publication-oriented tasks 𝜏𝑗 .
The utility from 𝜏 is increasing in the worker’s belief about her ability based on current

information (𝐼𝑖𝑡 , 𝐼̃𝑖𝑡). That is, workers who are more likely to be high-ability would value

publication-oriented tasks more than others.64

The expected labor supply (2.8) also depends on the task allocation:

𝜕𝑠𝑡 𝑗

𝜕𝜏𝑗
≠ 0,

𝜕2𝑠𝑡 𝑗

𝜕𝜏𝑗𝜕𝜋∗ ≥ 0 for 𝜋∗ B 𝑃𝑟(𝐻 |𝐼𝑡 ∪ 𝐼̃𝑡)

This complicates the optimal contracts set by forward-looking firms. Firms could assign

higher 𝜏 while keeping wages lower to attract equally capable workers. Workers with a

more positive belief that they are high-ability would also be willing to accept a lower wage

in exchange of higher 𝜏 that can increase their option value on the market, the same as

postdocs who “pay to do science” in Stern (2004).

The contracts set by employers in equilibrium are no longer unique. Despite the

presence of self-selection by forward-looking workers, firms continue to face a dynamic

trade-off when assigning publication-oriented tasks as emphasized in the benchmark model

(e.g., equation 2.12).

Prediction 1 on the increased job mobility and upward mobility from less productive

firms when workers publish continues to hold. Under asymmetric information, workers

with knowledge of (𝐼 , 𝐼̃)may stay at incumbent firms to enjoy a higher 𝜏 without requiring a

higher wage, or voluntarily accept a wage cut at firms that assign higher 𝜏. But the increase

in job mobility when 𝐼̃ becomes public information, in Prediction 2(b) and Prediction 3,

continue to hold.

63For simplicity, I assume that conditional on task 𝜏, the transition probabilities from current

(𝐼𝑖𝑡 , 𝐼̃𝑖𝑡) to next-period (𝐼 , 𝐼̃) is independent from firm 𝑗. That is, 𝑃𝑟(𝑫 | 𝑗 , 𝜏, 𝐼𝑖𝑡 ∪ 𝐼̃𝑖𝑡) ≡ 𝑃𝑟(𝑫 |𝜏, 𝐼𝑖𝑡 ∪ 𝐼̃𝑖𝑡)
.

64This point is also true if workers have additional information about themselves. There can be

self-selection of workers into firms with higher returns to publications based on workers’ private

information.
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B. Data

Doctoral Dissertations. Appendix Table B2 displays the number of dissertations by

year. For school×year cells with particularly low or missing data on ProQuest, I collected

about 15,000 more Ph.D. profiles from school-specific sources, such as department websites

or dissertation repositories. For example, the number of new dissertations from Carnegie

Mellon University dropped from 100 to 30 in 2014. I then collected additional dissertations

from its own open-access repository KiltHub. See a detailed breakdown of dissertations on

ProQuest versus school-specific sources in Appendix Table B3. The total number of Ph.D.

graduates in the sample by year, which stays around 3,000-3,300 per year from the top 60

schools since 2006 (Appendix Figure B4).

LinkedIn Profiles With the Recruiter Lite account, LinkedIn allowed me to view

public profiles within my third degree of connections. To deal with this limitation, I

actively connected with a random sample of Ph.D. graduates before the web scraping for

each school. I connected with individuals who published at CS conferences, or research

scientists at various companies. If an individual is on LinkedIn but falls outside my 3rd-

degree connections, the search result would indicate “Out of Network”. There were about

1,800 out-of-network profiles in total, out of fifty thousand queries that returned at least

one profile on LinkedIn. I manually checked a random sample of out-of-network profiles

and found that most of them had less than 100 connections on LinkedIn.

Publications Data. The main data source of research papers is Scopus, an abstract

and citation databases of peer-reviewed literature launced by Elsevier in 2004. For each

conference/journal × year, a query is submitted via Scopus Search API, and it returns a list

of papers with information such asauthor(s), title, abstract, ISSN, DOI, number of citations,

volume, issue, and publication date. Scopus also provides affiliations IDs at paper× author

level. Another query is submitted for each affiliation ID via the Affiliation Search API, and

returns the corresponding institution’s name and location. I consider a paper by author 𝑖

affiliated to 𝑗 as her on-the-job research if (1) 𝑗 can be matched with an employer of 𝑖 on her

LinkedIn profile; and (2) Author 𝑖 is employed by 𝑗 at the time of publication.

If a paper has multiple authors, I flag the paper if the majority of coauthors come

from 𝑖’s Ph.D. institution, which is likely to indicate a publication of her dissertation rather,

especially if it happens within the first year after PhD. I also flag papers where coworkers

come from a different industry employer, and remove papers that are matched with a

worker’s previous employer rather than her current one. For example, a person who moves

from Yahoo to Microsoft might put Microsoft as her affiliation at the time of publication,

but if her coauthors come from Yahoo, it is likely to indicate a work done at Yahoo rather

than Microsoft. Typically this kind of papers would declare “This work was done when X

was at ...”.

To evaluate paper quality, I collected citations from Scopus, which covers both journal

articles and conference papers. Citations from other conference papers are particularly

important in computer science. For each paper, I counted the number of citations by

year since publication, excluding self-citations by the authors themselves. Papers with a

matched patent application receive more citations over time as shown in Figure 3. The

citations on Scopus are mostly conference papers or journal articles.
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Figure B1: Publication of Patent Applications that are Matched to CS Papers
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Notes: This figure shows the fraction of patent applications matched to a CS

paper that have been published (blue) or granted (yellow) by month since the

earliest patent filing date. The jump in the share published at 18 months since

the initial filing is consistent with the 18-month rule in 35 U.S.C. 122 since the

American Inventors Protection Act (AIPA 1999). About 20% of matched patent

applications are disclosed later than 18 months. An audit study suggests that

the non-compliance is driven by applicants who file a non-publication request at

the time of the initial filing, as explained by Exception B of 35 U.S.C. 122 (b) in

Table B3. Such applications will be published when the US patent office makes a

final decision about whether a patent can be issued or the application should be

rejected. Looking at three years since the earliest filing, more than 95% of matched

patent applications have been published.
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Figure B2: Job Postings for Research Scientists

(a) Amazon Science

(b) Google Research

Notes: This figure shows recent postings of research scientist jobs at Ama-

zon and Google. Both ads explicitly indicate a graduate degree in computer

science as a basic qualification for this type of jobs, and list “publication

records” as preferred qualifications.

Figure B3: CS PhDs in NSF Surveys
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Notes: (a) displays the number of new PhDs in the Survey of Earned Doctorates

by NSF. (b) come from the the Survey of Doctoral Recipients, restricted to Ph.D.

recipients in the U.S. with nonmissing employer information between age 30-34.
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Figure B4: Number of PhD Dissertations and Matched LinkedIn Profiles by Grad-

uation Year
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Notes: The blue line (top) shows the number of Ph.D. recipients in Computer

Science or Electrical Engineering identified in ProQuest dissertation database or

various school-specific sources (Appendix Table B2) by graduation year from 1980

to 2021. The yellow line plots the number of Ph.D.s who are matched with a public

LinkedIn profile by full name, Ph.D. institution, year of graduation.

Figure B5: LinkedIn Platform

Notes: This figure shows the outputs of one query on the LinkedIn Recruiter Lite platform.

The query includes the full name of a CS Ph.D. and keywords about a "Ph.D." degree and

about CS such as "computer science" or "electrical engineering". The search is also restricted

to CMU, where the person receives the Ph.D. degree. This query returns two profiles. The

first profile returned perfectly matches the name and education info, whereas the second

person has a very different name. If the fuzzy partial text match score between the actual

full name and that on a LinkedIn profile falls below 50 (out of 100), the scraper would not

collect that profile.
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Figure B6: ROC Curve for Paper-Patent Matching by Threshold of Embedding

Distance
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Notes: A paper and a patent application are defined as a match if they are produced

by almost the same researchers at the same institution and discuss almost identical

research findings from the same project. This figure shows the ROC curve of

a predictor for paper-patent matches based on the distance between a paper’s

embedding and a patent application’s embedding. A paper-patent is predicted as

a match if the distance falls below a certain threshold. The performance of this

classification model is evaluated on a random sample of 200 paper-patent pairs

that satisfy the other three criteria (see Section 4.3.2). By reading the complete text

of papers and patent applications rather than just titles and abstracts, I manually

labeled the true matches. We then calculated the true positive rates (recall) and

false positive rates of the predictor at each threshold, and selected 0.35 as the

threshold that is relatively closer to the most desirable (0, 1).
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Table B1: Explanatory Power of PhD School + Cohort Fixed Effects

Economics CS/EE

Outcome 𝑅2
Outcome 𝑅2

Ln Citations Pre Tenure 0.275 Ln Citations in 5 Yrs 0.063

Num. Papers Pre Tenure 0.188 Num. Papers in 5 Yrs 0.055

Note: Economist CV data is provided by Sarsons (2017).
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Table B2: Number of Profiles by Year

PhD Graduates LinkedIn Profiles

Yr. PhD ProQuest Websites Potential Profiles Out-of-network Matched Profiles

1980 595 140 254 11 185

1981 640 156 241 25 166

1982 639 156 272 23 200

1983 662 191 250 18 178

1984 702 173 285 25 193

1985 772 211 335 38 218

1986 920 208 384 45 238

1987 1002 179 432 26 321

1988 1393 85 559 40 380

1989 1571 68 610 61 399

1990 1873 68 717 50 535

1991 2040 69 832 58 616

1992 2162 88 859 65 643

1993 2179 88 923 61 706

1994 2244 89 981 59 753

1995 2303 91 1066 56 813

1996 2190 99 1097 79 819

1997 2100 92 1043 51 801

1998 2158 91 1116 59 839

1999 2151 85 1099 48 859

2000 2038 92 1104 51 853

2001 1778 97 1064 52 840

2002 1764 88 990 44 795

2003 1924 112 1138 43 922

2004 2194 159 1322 44 1095

2005 2462 152 1645 62 1310

2006 2779 232 1892 65 1516

2007 2900 251 2087 67 1669

2008 2726 201 1967 60 1571

2009 2499 293 1792 42 1429

2010 2508 541 1932 48 1570

2011 2500 575 1965 46 1609

2012 2523 554 2046 31 1653

2013 2426 801 2133 25 1726

2014 2388 940 2215 28 1724

2015 2274 1038 2213 44 1711

2016 2258 853 2084 27 1599

2017 2266 1019 2182 24 1646

2018 2197 939 2086 26 1598

2019 2107 1160 2118 37 1613

2020 2193 1108 2035 43 1561

2021 1971 1071 1823 38 1321
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Table B3: Number of Profiles by School (ProQuest vs. School-specific Dissertation

Database or Websites)

ProQuest Dissertations School-specific Sources

School # Dissertations LinkedIn Profiles Matched # Dissertations LinkedIn Profiles Matched

austin 2028 990 845 1671 762 635

berkeley 3169 1949 1618 836 369 272

caltech 721 435 296 402 184 112

cmu 2357 1537 1259 2332 920 695

cornell 1738 962 685 481 203 125

git 2379 1426 1174 2300 1230 946

maryland 2421 1380 1143 895 233 169

michigan 2520 1403 1082 1052 331 244

mit 3726 2259 1684 769 353 251

nyu 478 272 200 147 58 48

oregon 412 196 144 233 157 76

princeton 1297 818 637 88 44 35

psu 1734 1012 807 181 91 65

purdue 2448 1387 825 202 87 77

rutgers 837 507 377 350 103 64

ucsb 1450 904 758 61 20 15

uiuc 3541 2070 1630 2359 776 451

umass 826 480 336 296 192 131

utah 714 418 296 48 20 12
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Table B4: Patent Laws - Title 35, United States Code

Law Content

35 U.S.C. 102 CONDITIONS FOR PATENTABILITY

(a) NOVELTY; PRIOR ART.- A person shall be entitled to a patent unless—

(A) the claimed invention was patented, described in a printed publication,

..., or otherwise available to the public before the effective filing date of

the claimed invention

(b) EXCEPTIONS: (1) A disclosure made 1 year or less before the effective filing
date of a claimed invention shall not be prior art to the claimed invention under

subsection (a)(1) if—

(A) the disclosure was made by the inventor or joint inventor or by another
who obtained the subject matter disclosed directly or indirectly from
the inventor or a joint inventor; or

(B) the subject matter disclosed had, before such disclosure, been publicly

disclosed by the inventor or a joint inventor or another who obtained

the subject matter disclosed directly or indirectly from the inventor or a

joint inventor.

35 U.S.C. 122 CONFIDENTIAL STATUS OF APPLICATIONS; PUBLICATION OF PATENT

APPLICATIONS

(a) CONFIDENTIALITY.— Except as provided in subsection (b), applications for

patents shall be kept in confidence by the Patent and Trademark Office and no

information concerning the same given without authority of the applicant or

owner unless necessary to carry out the provisions of an Act of Congress or in

such special circumstances as may be determined by the Director.

(b) PUBLICATION.-

(1) IN GENERAL.— (A) Subject to paragraph (2), each application for a

patent shall be published, ..., promptly after the expiration of a period

of 18 months from the earliest filing date for which a benefit is sought

under this title.

(2) EXCEPTIONS.— (A) (i) no longer pending; (ii) subject to a secrecy order

under section 181 ; (iii) a provisional application filed under section

111(b); or (iv) an application for a design patent...

(2) EXCEPTIONS.- (B) If an applicant makes a request upon filing, certifying

that the invention disclosed in the application has not and will not be the

subject of an application filed in another country...

Notes: Detailed discussions of title 35 U.S.C. can be found on the USPTO websites: U.S.C. 102 pre-

AIA, U.S.C. 102 AIA, U.S.C. 122. Notably, the America Invents Act in 2011 switched the U.S. patent

system from a “first to invent” to a “first to file” system. But the 12-month grace period in filing

a patent application for inventors’ own publications (35 U.S.C. 102), and the 18-month publication

rule (35 U.S.C. 122) have not changed since the American Inventors Protection Act (AIPA 1999).
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Table B5: Descriptive Statistics: Matched Computer Scientists

Full Sample Balanced sample

Mean SD Mean SD

Gender from Name or Picture

Female 0.118 0.323 0.123 0.329

Male 0.725 0.446 0.708 0.455

Education

Year of Ph.D. 2007 9.853 2011 3.689

Ph.D. in CS (∋ EECS) 0.531 0.499 0.522 0.500

Ph.D. in EE 0.469 0.499 0.478 0.500

If bachelor information is available:

Bachelor in the U.S. 0.446 0.497 0.386 0.487

Bachelor from Top 60 CS in the U.S. 0.288 0.453 0.249 0.432

Research Outputs Post Ph.D.

Num. Papers 2.506 9.452 2.491 8.767

Num. Paper-Patent Matches 0.219 1.444 0.231 1.413

Num. Patent Applications Not Matched to a Paper 1.672 3.142 1.375 2.275

Any Paper 0.282 0.450 0.297 0.457

Any Paper-Patent Match 0.067 0.250 0.074 0.261

Any Patent Application Not Matched to a Paper 0.426 0.494 0.448 0.497

Employment Post Ph.D.

Num. Yrs with Full-time Employment 13.498 6.910 11.530 3.692

Num. Tenure-track Employers 0.300 0.617 0.259 0.574

Num. Postdoc Employers 0.154 0.398 0.205 0.454

Num. Top Firms 0.295 0.541 0.373 0.598

Num. Nontop Firms 1.866 1.664 1.612 1.310

Ever on the Tenure track 0.231 0.421 0.198 0.398

Ever a Postdoc 0.141 0.348 0.185 0.388

Ever at Top Firms 0.256 0.436 0.316 0.465

Ever at Nontop Firms 0.795 0.404 0.800 0.400

Observations 40,219 18,860

Notes: This table summarizes the sample of matched Ph.D.’s with non-missing full-time

employment records on LinkedIn (Section 3.2). The full sample (first two columns) includes

matched CS/EE Ph.D.’s from top 60 CS schools who graduated between 1980 and 2021,

and have at least one full-time job with one employer self-reported on LinkedIn. We use

the full sample throughout Section 4. The balanced (sub)sample restricts to those who

graduated between 2005 and 2018 and have 5 years of non-missing job history since Ph.D.

on LinkedIn. We use this subsample to estimate the 5-period structural model in Section 5.

• Gender is classified based on either first name or profile picture (available for 78% of the

sample). 15% remains missing, due to either a missing picture or gender-neutral or foreign

names that cannot be classified based on the U.S. Census.

• A paper-patent match is established according to 3.3.2.
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Table B6: Descriptive Statistics: Person-Year Panel

𝒋(𝒊 , 𝒕) ∈ Nontop Firms Top Firms Academia

Mean SD Mean SD Mean SD

Experience (Years since Ph.D.) 11.678 8.569 9.209 7.322 11.587 9.052

Experience in Academia 1.171 3.236 0.675 2.222 9.771 8.173

Tenure 5.007 5.449 4.981 5.352 7.575 7.672

Current Position

Tenure-track 0.000 0.009 0.000 0.000 0.728 0.445

Postdoc 0.000 0.000 0.000 0.000 0.104 0.305

Research Scientist 0.119 0.324 0.149 0.356 0.036 0.186

Engineer 0.453 0.498 0.604 0.489 0.036 0.187

Manager 0.153 0.360 0.195 0.396 0.016 0.127

Senior Position 0.496 0.500 0.391 0.488 0.053 0.224

Any Promotion 0.062 0.242 0.064 0.245 0.060 0.238

Research Outputs

Any Paper 0.023 0.151 0.113 0.317 0.185 0.388

Any Paper-Patent Match 0.006 0.075 0.033 0.180 0.013 0.111

Any Patent App Not Matched to a

Paper

0.126 0.332 0.203 0.402 0.047 0.212

Movements between Employers
𝒋(𝒊 , 𝒕) vs. 𝒋(𝒊 , 𝒕 + 1)

New Employer Next Year 0.118 0.323 0.065 0.247 0.074 0.262

Employed by Top Firms Next Year 0.016 0.124 0.949 0.221 0.006 0.079

Observations 331,451 68,230 143,197

Notes: This table summarizes the person×year level panel for matched Ph.D.’s. The first two

columns display the means across person×year observations for those currently employed

by a firm outside the top tier in the industry, denoted as 𝒋(𝒊 , 𝒕) ∈ non-top. The second

set restricts to those working at top firms, and the third set to those working in academia

(including postdocs, tenure-track jobs or other roles). We put all postdocs and faculty in

the third group. There are 530 person×year observations (226 individuals) where a person

works as a postdoc or visiting scholar in one of the top firms.
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Table B7: Examples of CS Papers and Matched Patent Applications

Papers Matched Patent Applications

Firm Team

Over-

lap

Text

Distance

Title M/Yr Title Filing

M/Yr

Published

M/Yr

Microsoft 100% 0.247 FROID OPTIMIZATION OF

IMPERATIVE PROGRAMS IN

A RELATIONAL DATABASE

12/2017 METHOD FOR OPTIMIZA-

TION OF IMPERATIVE CODE

EXECUTING INSIDE A RELA-

TIONAL DATABASE ENGINE

05/2017 11/2018

Adobe 80% 0.273 FORECASTING HUMAN DY-

NAMICS FROM STATIC IM-

AGES

07/2017 FORECASTING MULTIPLE

POSES BASED ON A GRAPHI-

CAL IMAGE

04/2017 10/2018

Google 70% 0.146 VARIABLE RATE IMAGE

COMPRESSION WITH RE-

CURRENT NEURAL NET-

WORKS

05/2016 IMAGE COMPRESSION WITH

RECURRENT NEURAL NET-

WORKS

02/2016 01/2019

Yahoo 100% 0.233 UNBIASED ONLINE AC-

TIVE LEARNING IN DATA

STREAMS

08/2011 ONLINE ACTIVE LEARNING

IN USER-GENERATED CON-

TENT STREAMS

10/2011 05/2013

IBM 100% 0.121 A TAG BASED APPROACH

FOR THE DESIGN AND COM-

POSITION OF INFORMATION

PROCESSING APPLICATIONS

09/2008 FACETED, TAG-BASED AP-

PROACH FOR THE DESIGN

AND COMPOSITION OF

COMPONENTS AND APPLI-

CATIONS IN COMPONENT-

BASED SYSTEMS

10/2008 04/2010

Notes: This table presents examples of CS papers and matched patent applications. “Firm” refers to the common affiliation of

authors, which is matched to the assignee of the matched patent. “Team Overlap” is defined as the fraction of inventors on a

patent application who are matched with authors on the paper. Research assistants or interns may be authors on a paper but

excluded from inventors on a patent application. “Text distance” is measured by the distance between the embedded vector for

a paper’s title and abstract, and that of a patent’s. The word embedding was done via OpenAI’s Ada V2 model. The timestamp

“M/Yr” for a paper is the month/yr when it is published at a conference. “Filing M/Yr” for a patent application is based on the

earliest filing or priority date, and in “Published M/Yr” a patent application becomes public for the first time.
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C. Reduced-Form Tests for Employer Learning (Section 4)

Figure C1: Heterogeneity in Mobility Responses by Experience since PhD

(a) Any Move between Firms

(b) Employment by Top Firms Next Year

Notes: I add interactions between 𝐷𝑖𝑡(𝑃), 𝐷𝑖𝑡(𝑃𝑄), Lagged-𝐷𝑖𝑡(𝑃), Lagged-𝐷𝑖𝑡(𝑃𝑄) and

years of experience since PhD to the regression (4.1). The barplot above shows the estimated

𝛽̂𝑘 on 𝐷𝑖𝑡(𝑘) and 𝛾̂𝑘 on Lagged-𝐷𝑖𝑡(𝑘) for 𝑘 = 𝑃, 𝑃𝑄, respectively at each experience level.
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Table C1: Job Mobility on Papers & Matched Patents (Poisson Regressions)

Move between Firms Move into Top Firms

(1) Nontop (2) Top (3) Academia (4) Nontop (5) Top (6) Academia

CS Papers at t : Dit(P) vs. 𝑫𝒊𝒕(𝑷𝑸)

Paper only 0.2626 -0.0227 0.0992 0.5395 0.0034 0.3048

(0.0382) (0.0617) (0.0304) (0.0800) (0.0038) (0.0985)

Paper+Matched Patent 0.1495 0.0145 0.0128 0.3251 0.0021 0.3290

(0.0640) (0.0810) (0.1016) (0.1234) (0.0058) (0.2274)

CS Papers in [t − 3, t − 1]: Lagged-𝑫𝒊𝒕(𝑷) vs. Lagged-𝑫𝒊𝒕(𝑷𝑸)

Paper only 0.0083 0.0134 0.1153 0.1052 -0.0003 0.6870

(0.0274) (0.0463) (0.0270) (0.0550) (0.0030) (0.0957)

Paper+Matched Patent 0.1393 0.0910 0.0598 0.2593 0.0003 0.7869

(0.0426) (0.0661) (0.0714) (0.0915) (0.0050) (0.1818)

Patents unrelated to CS Papers

𝐷𝑖𝑡(𝑄) -0.1114 -0.0712 -0.0990 -0.0175 0.0089 0.1389

(0.0189) (0.0415) (0.0500) (0.0473) (0.0027) (0.1120)

Lagged-𝐷𝑖𝑡(𝑄) 0.0417 -0.0189 0.0749 0.1194 0.0035 0.0360

(0.0148) (0.0363) (0.0345) (0.0401) (0.0022) (0.1081)

Mean .1588418 .0656451 .1209954 .0469412 .9485002 .0304762

N 161K 66K 75K 86K 66K 27K

Pseudo 𝑅2
.1377074 .0382099 .1894513 .1777506 .0003756 .2066823

Notes: This table presents Poisson regressions of the mobility outcomes (indicators) on the same

controls and fixed effects as specified in (4.3). The coefficients on 𝐷𝑖𝑡(𝑘) or Lagged-𝐷𝑖𝑡(𝑘) for

𝑘 = 𝑃, 𝑃𝑄, 𝑄 represent proportional increase in job mobility among workers with output 𝑘 relative

to coworkers group without an innovation output. Observations that are separated by a fixed effect

are dropped from the estimation sample of a Poisson regression. For example, if the mean of the

dependent variable is 0 at a firm-yr (𝑗 , 𝑡), all observations within that (𝑗 , 𝑡) would be dropped in

Poisson regression above but not in OLS (Table 3).
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Table C2: Effects of Papers & Matched Patents on Job Mobility (Person Fixed Effect)

Move between Firms Move into Top Firms

(1) Nontop (2) Top (3) Academia (4) Nontop (5) Top (6) Academia

CS Papers at t : Dit(P) vs. 𝑫𝒊𝒕(𝑷𝑸)

Paper only 0.0325 -0.0040 0.0065 0.0113 0.0055 0.0011

(0.0063) (0.0045) (0.0029) (0.0034) (0.0039) (0.0010)

Paper+Matched Patent 0.0309 0.0045 0.0025 0.0127 0.0026 0.0014

(0.0115) (0.0067) (0.0070) (0.0060) (0.0056) (0.0026)

CS Papers in [t − 3, t − 1]: Lagged-𝑫𝒊𝒕(𝑷) vs. Lagged-𝑫𝒊𝒕(𝑷𝑸)

Paper only 0.0066 -0.0022 0.0082 -0.0007 0.0012 0.0038

(0.0043) (0.0038) (0.0027) (0.0023) (0.0034) (0.0011)

Paper+Matched Patent 0.0306 0.0110 0.0048 0.0080 0.0041 0.0040

(0.0080) (0.0065) (0.0057) (0.0043) (0.0058) (0.0022)

Patents unrelated to CS Papers

𝐷𝑖𝑡(𝑄) 0.0044 0.0089 -0.0007 0.0015 -0.0030 0.0017

(0.0025) (0.0031) (0.0043) (0.0011) (0.0028) (0.0015)

Lagged-𝐷𝑖𝑡(𝑄) 0.0183 0.0140 0.0036 0.0033 -0.0100 -0.0020

(0.0024) (0.0030) (0.0033) (0.0011) (0.0027) (0.0010)

Mean .1105 .0624 .0683 .0167 .9521 .0058

N 222K 65K 121K 222K 65K 121K

Adj. 𝑅2
.1993 .0969 .1883 .1404 .0969 .1718

Notes: This table presents regression estimates of equation 4.1 with person fixed effects.

See the notes under Table 3 for details on other controls.
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Table C3: Additional Mobility Outcomes - Wage Growth and Academic Employment

Move to a Higher-Wage Firm Higher-Wage Position Move to Academia

(1) Nontop (2) Top (3) Nontop (4) Top (5) Nontop (6) Top (7) Academia

CS Papers at t : Dit(P) vs. 𝑫𝒊𝒕(𝑷𝑸)

Paper only 0.0280 -0.0005 0.0313 0.0060 0.0139 0.0074 0.0185

(0.0056) (0.0035) (0.0078) (0.0039) (0.0026) (0.0019) (0.0019)

Paper+Matched Patent 0.0209 -0.0014 0.0115 0.0130 0.0056 0.0091 0.0122

(0.0093) (0.0056) (0.0117) (0.0076) (0.0041) (0.0031) (0.0057)

CS Papers in [t − 3, t − 1]: Lagged-𝑫𝒊𝒕(𝑷) vs. Lagged-𝑫𝒊𝒕(𝑷𝑸)

Paper only 0.0017 -0.0018 -0.0021 -0.0029 0.0051 0.0028 0.0107

(0.0032) (0.0024) (0.0041) (0.0024) (0.0013) (0.0012) (0.0018)

Paper+Matched Patent 0.0132 0.0072 0.0174 0.0014 0.0077 -0.0008 0.0179

(0.0059) (0.0044) (0.0080) (0.0046) (0.0027) (0.0020) (0.0038)

Mean .0594277 .039501 .0428258 .026157 .0099243 .0058593 .9498891

N 131K 59K 52K 45K 220K 66K 122K

Adjusted 𝑅2
.087463 .0185282 .0625471 .0178933 .0934459 .0076865 .0478011

Notes: This table presents estimates of 4.1 for changes in job titles as reported on LinkedIn. The first three columns show the

regression of any promotion on innovation outputs 𝐷𝑖𝑡(𝑘), Lagged-𝐷𝑖𝑡(𝑘) for 𝑘 = 𝑃, 𝑃𝑄, which is estimated on workers who are

not in senior roles yet (e.g., not a “senior software engineer”). In academia, a promotion is coded as assistant professors getting

tenured. Columns (4)-(9) are estimated for workers in the industry. (4)-(5) present the regressions of becoming a research scientist

on innovation outputs, estimated on employees who are not research scientists at nontop firms , and at top firms, respectively.

Likewise, becoming an engineer or manager is estimated on workers who are not an engineer or manager yet.
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Table C4: Additional Mobility Outcomes - Promotion | Stayers

Promotion New Scientist New Engineer New Manager

(1) Nontop (2) Top (3) Academia (4) Nontop (5) Top (6) Nontop (7) Top (8) Nontop (9) Top

CS Papers at t : Dit(P) vs. 𝑫𝒊𝒕(𝑷𝑸)

Paper only 0.0413 0.0370 0.0470 0.0090 -0.0047 0.0058 -0.0035 0.0078 0.0082

(0.0065) (0.0056) (0.0031) (0.0050) (0.0032) (0.0034) (0.0026) (0.0029) (0.0028)

Paper+Matched Patent 0.0324 0.0120 0.0478 0.0194 0.0042 -0.0033 -0.0038 0.0136 0.0038

(0.0124) (0.0070) (0.0101) (0.0105) (0.0044) (0.0038) (0.0032) (0.0054) (0.0046)

CS Papers in [t − 3, t − 1]: Lagged-𝑫𝒊𝒕(𝑷) vs. Lagged-𝑫𝒊𝒕(𝑷𝑸)

Paper only 0.0081 0.0034 0.0119 0.0061 0.0026 -0.0052 -0.0007 -0.0017 -0.0021

(0.0035) (0.0034) (0.0025) (0.0032) (0.0034) (0.0019) (0.0022) (0.0016) (0.0019)

Paper+Matched Patent 0.0278 0.0077 0.0200 0.0120 -0.0038 0.0004 -0.0035 0.0013 0.0056

(0.0086) (0.0058) (0.0069) (0.0077) (0.0037) (0.0036) (0.0026) (0.0033) (0.0035)

N 87K 37K 65K 172K 53K 88K 24K 160K 49K

Adjusted 𝑅2
.040206 .0220636 .0461156 .1642801 .0366538 -.0251746 .0032157 .0111164 .0077875

Notes: This table presents the same set of regressions of promotions or position changes on innovation outputs as in Table C4,

but are estimated on stayers who are not moving to a new firm the next year.
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D. Additional Results from Structural Analysis

Appendix Figure D1: Posterior versus Prior by PhD Ranking
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Appendix Figure D2: Allocation to Innovation Task against Employer Belief
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Appendix Figure D3: Change in Publication Rate in the Absence of Employer

Learning
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Table D1: Model Parameters

Parameter Description Calibration Maximum-Likelihood Estimate

I. Common Prior

𝛿 Logit Coefficient on 𝑋(𝐼𝑖1) in (5.1) (−0.24, 0.009, 3.02,−2) on

phd rank and pub before

PhD

(−0.49,−0.98,−1.50,−2) on 𝐺𝑖1

II. Labor Supply - Preferences for Employers

𝑏 utility weight on log wage (2.6) 0.63

𝜌𝐺 1− corr. of 𝜖𝑖𝑡 𝑗 for 𝑗 ∈ nest 𝐺 𝜌2 = 1 for postdoc (0.78, 0.45, 0.88) at 𝐺 ≠ 2

(𝜂1,𝐺 , 𝜂2,𝐺) preference for market 𝐺: (0.5, 1) at 𝐺 = 1 (0.48, 0.49) at 𝐺 = 3

𝜂1,𝐺𝜋 + 𝜂2,𝐺𝜋2 (0, 0) at 𝐺 = 2 (−0.24,−0.49) at 𝐺 = 4

(𝜆0,𝐺 ,𝜆1,𝐺) prob. of workers re-entering the la-

bor market (2.5)

(0.40,−0.50) at 𝐺 = 2 (0.04,−0.5) at 𝐺 = 1

𝜆𝐺(𝜋) = 𝜆0,𝐺×(1+𝜆1,𝐺×𝜋), at 𝑡 > 1 (0.08, 0.10) at 𝐺 = 3, (0.13, 0.99)
at 𝐺 = 4

(Λ𝐴𝐽 ,Λ𝐽𝐴) prob. academia is open to workers

from industry, and vice versa.

(0.24, 0.32)

III. Firm Productivity

𝜙 𝑗 Baseline productivity in routine

tasks of 16 employers

𝜙̄1 , 𝜙̄2 , 𝜙̄3 , 𝜙̄5 , 𝜙̄11 Table D2

𝜙 𝑗(𝑃) 𝑗’s proportional return to paper Table D2

𝜙 𝑗(𝑄) 𝑗’s proportional return to patent 𝑗-fixed effect in patenting Table D2

𝜙 𝑗(𝑃𝑄) 𝑗’s proportional return to paper-

patent

𝜙 𝑗(𝑃𝑄) = 2.25 𝜙 𝑗(𝑃) +
0.25 𝜙 𝑗(𝑄)

𝜁 cost of innovation: 𝑐(𝜋, 𝜏) = 𝜁
2
𝜏2 𝜁 = 6

IV. Worker Productivity

𝑝𝐻 , 𝑝𝐿 prob. of a 𝐻-ability producing a

paper (𝑦 = 1)

(0.81, 0.19)

𝑝̃𝐻 , 𝑝̃𝐿 prob. of a 𝐿-ability producing a pa-

per (𝑦 = 1)

(0.42, 0.18)

𝑞𝐻 , 𝑞𝐿 prob. of a 𝐻-ability producing a

paper with a matched patent (𝑦̃ = 1)

(0.69, 0.51)

Others

𝛽 exponential discount factor 0.90

Notes: There are 56 free parameters that are estimated by maximizing the joint likelihood of job movements

and innovation outputs (5.2), using the limited-memory BFGS optimization algorithm (Liu and Nocedal

1989).
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Table D2: Firm Level: Estimated Productivity, Size and Wage Returns

Returns to Innovation

𝑗 Description Baseline 𝜙 𝑗 Paper 𝜙 𝑗(𝑃) Patent 𝜙 𝑗(𝑄)

Nest 1. Academia - Tenure Track

0 Nontop Schools 0.298 9.699 1.605

1 Top 25 CS 0.011 16.001 1.840

Nest 2. Academia - Postdoc

2 Postdoc at Nontop Schools 0.015 8.232 1.940

3 Postdoc at Top 25 CS 0.008 9.510 1.921

Nest 3. Industry - Top Firms

4 IBM 0.005 9.791 10.659

5 Microsoft 0.022 7.306 5.142

6 Amazon 0.019 3.646 4.462

7 Facebook (Meta) 0.021 5.109 3.863

8 Apple 0.018 1.738 5.677

9 Google (Alphabet) 0.060 5.052 3.948

Nest 4. Industry - Nontop Firms (Grouped by Patenting FE)

10 Above 90th Percentile 0.087 5.856 8.504

11 80th-90th 0.214 5.452 4.393

12 70th-80th 0.088 4.730 2.429

13 50th-70th 0.171 4.488 1.634

14 25th-50th 0.157 5.273 0.927

15 <25th Percentile 0.122 4.575 0.020

Notes: This table displays the maximum-likelihood estimates of the baseline productivity, 𝜙 𝑗 , and

their returns to publications, 𝜙 𝑗(𝑃). The productivity in patenting, 𝜙 𝑗(𝑄), is calibrated based on the

estimated firm fixed effect in filing patent applications unrelated to papers. I further calibrate the

return to a paper with a matched patent as 𝜙 𝑗(𝑃𝑄) = 2.25×𝜙 𝑗(𝑃)+0.25×𝜙 𝑗(𝑄).. In academia, “Top

CS” includes the top 25 CS departments ranked by CSRankings: CMU, Berkeley, Stanford, MIT,

Georgia Tech, Cornell, USC, UIUC, Princeton, Washington State, UCLA, UCSD, UMass - Amherst,

UMich, Purdue, Maryland, Northeastern, Madison, Columbia, UT-Austin, UPenn, NYU, UC-Irvine,

UC-Santa Barbara, UChicago, Stony Brook. Nontop firms in the industry are grouped according

the the calibrated 𝜙 𝑗(𝑄).
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Table D3: Descriptive Statistics: Person-Year Panel

𝒋(𝒊 , 𝒕) ∈ Nontop Firms Top Firms Academia

Mean SD Mean SD Mean SD

Experience (Years since Ph.D.) 3.020 1.410 3.157 1.401 2.853 1.419

Experience in Academia 0.295 0.820 0.195 0.648 2.703 1.402

Tenure 2.020 1.495 2.203 1.533 1.898 1.432

Current Position

Tenure-track 0.000 0.014 0.000 0.000 0.528 0.499

Postdoc 0.000 0.000 0.000 0.000 0.295 0.456

Research Scientist 0.170 0.376 0.167 0.373 0.047 0.212

Engineer 0.567 0.495 0.665 0.472 0.040 0.196

Manager 0.120 0.325 0.129 0.335 0.010 0.101

Senior Position 0.461 0.498 0.341 0.474 0.039 0.192

Any Promotion 0.097 0.296 0.089 0.284 0.057 0.231

Research Outputs

Any Paper 0.042 0.200 0.128 0.334 0.206 0.404

Any Paper-Patent Match 0.011 0.104 0.041 0.198 0.013 0.115

Any Patent App Not Matched to a

Paper

0.162 0.368 0.220 0.414 0.054 0.226

Movements between Employers
𝒋(𝒊 , 𝒕) vs. 𝒋(𝒊 , 𝒕 + 1)

New Employer Next Year 0.156 0.363 0.080 0.271 0.165 0.371

Employed by Top Firms Next Year 0.030 0.171 0.942 0.233 0.017 0.130

Observations 53,839 16,081 24,380

Notes: This table summarizes the 5-yr balanced estimation sample at person×year

level. We restrict to 18,860 workers who graduated between 2005 and 2018 and

have full-time non-missing employment history for the first five years post PhD.

See the notes under Table B5 and Table B6 for additional details on the variables.
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Between-Within Decomposition

𝐸[𝑃𝑢𝑏𝑖𝑡 |𝑆 ∪ {𝑚}] − 𝐸[𝑃𝑢𝑏𝑖𝑡 |𝑆] ∝
∑
𝛼

𝑝𝛼 × ©­«
∑

𝑖𝑛∈{0,1}

∑
𝑡 , 𝑗,𝜋

△𝑛(𝑖𝑛)
𝑡 𝑗,𝛼(𝜋) × 𝜏(𝑖𝑛)

𝑡 𝑗
(𝜋|𝑆 ∪ {𝑚})ª®¬︸                                                 ︷︷                                                 ︸

between firm

+
∑
𝛼

𝑝𝛼 × ©­«
∑

𝑖𝑛∈{0,1}

∑
𝑡 , 𝑗,𝜋

𝑛
(𝑖𝑛)
𝑡 𝑗,𝛼(𝜋|𝑆) × △𝜏(𝑖𝑛)

𝑡 𝑗
(𝜋)ª®¬︸                                       ︷︷                                       ︸

within firm

in which △𝑛(𝑖𝑛)
𝑗 ,𝛼 (𝜋) = 𝑛

(𝑖𝑛)
𝑡 𝑗,𝛼(𝜋|𝑆 ∪ {𝑚}) − 𝑛

(𝑖𝑛)
𝑡 𝑗,𝛼(𝜋|𝑆) at state 𝜋

Table D4: Between-Within Decomposition

S Publication Rate % Change

BenchmarkM 0.0923 0%

M\ Employer Learning 0.0777 -15.8%

Hold 𝜏(·|M) fixed:

M\ Employer Learning 0.0879 -4.8%

87


	Introduction
	A Dynamic Model of Employer Learning
	Conceptual Framework
	Model Specification and Equilibrium 
	Notation and Information Structure
	Workers' Problem
	Employers' Problem
	Equilibrium

	Model Predictions

	Data
	Ph.D. Graduates in Computer Science
	Public LinkedIn Profiles of CS Ph.D.'s
	On-the-job Research
	Computer Science Papers
	Paper-Patent Matches
	Other Patent Applications


	Empirical Tests for Employer Learning
	Public Learning: Mobility Responses to CS Papers
	Asymmetric Learning: Papers vs. Patent Applications
	Additional Evidence of Learning: Wage Growth and Promotions

	Structural Analysis
	Model Estimation
	Parameters and Identification
	Estimation Procedure
	Estimation Results

	Impacts of Employer Learning on Allocative Efficiency
	Shapley Value of Each Learning Mechanism

	Asymmetric Learning on Efficiency

	Conclusion
	Appendix
	A. Proofs
	B. Data
	C. Additional Tests
	D. Estimation


